dc.contributor.author |
Tarantilis, CD |
en |
dc.contributor.author |
Zachariadis, EE |
en |
dc.contributor.author |
Kiranoudis, CT |
en |
dc.date.accessioned |
2014-03-01T01:27:41Z |
|
dc.date.available |
2014-03-01T01:27:41Z |
|
dc.date.issued |
2008 |
en |
dc.identifier.issn |
0160-5682 |
en |
dc.identifier.uri |
https://dspace.lib.ntua.gr/xmlui/handle/123456789/18539 |
|
dc.subject |
Distribution |
en |
dc.subject |
Heuristics |
en |
dc.subject |
Logistics |
en |
dc.subject |
Vehicle routeing problem |
en |
dc.subject.classification |
Management |
en |
dc.subject.classification |
Operations Research & Management Science |
en |
dc.subject.other |
Cost accounting |
en |
dc.subject.other |
Tabu search |
en |
dc.subject.other |
Vehicles |
en |
dc.subject.other |
Benchmark problems |
en |
dc.subject.other |
Carrying loads |
en |
dc.subject.other |
Computational times |
en |
dc.subject.other |
Distance units |
en |
dc.subject.other |
Distribution |
en |
dc.subject.other |
Fleet compositions |
en |
dc.subject.other |
Guiding strategies |
en |
dc.subject.other |
Heterogeneous vehicles |
en |
dc.subject.other |
Heuristics |
en |
dc.subject.other |
Minimum costs |
en |
dc.subject.other |
Objective functions |
en |
dc.subject.other |
Variable costs |
en |
dc.subject.other |
Fleet operations |
en |
dc.title |
A guided tabu search for the heterogeneous vehicle routeing problem |
en |
heal.type |
journalArticle |
en |
heal.identifier.primary |
10.1057/palgrave.jors.2602504 |
en |
heal.identifier.secondary |
http://dx.doi.org/10.1057/palgrave.jors.2602504 |
en |
heal.language |
English |
en |
heal.publicationDate |
2008 |
en |
heal.abstract |
The aim of this paper is to present a new algorithmic methodology for the heterogeneous fixed fleet vehicle routeing problem (HFFVRP). HFFVRP consists of determining the minimum cost routes for a fleet of vehicles in order to satisfy the demand of the customer population. The fleet composition is fixed and consists of various types of vehicles that differ with respect to their maximum carrying load and variable cost per distance unit. Our proposed algorithm called guided tabu search (GTS) is based on tabu search controlled by a continuous guiding mechanism that modifies the objective function of the problem. The role of this guiding strategy is to diversify the conducted search and help it overcome local optima encountered. The GTS method was applied successfully on HFFVRP benchmark problems producing best-known and new best-known solutions in short computational times. © 2008 Operational Research Society Ltd. All rights reserved. |
en |
heal.publisher |
PALGRAVE MACMILLAN LTD |
en |
heal.journalName |
Journal of the Operational Research Society |
en |
dc.identifier.doi |
10.1057/palgrave.jors.2602504 |
en |
dc.identifier.isi |
ISI:000260925200009 |
en |
dc.identifier.volume |
59 |
en |
dc.identifier.issue |
12 |
en |
dc.identifier.spage |
1659 |
en |
dc.identifier.epage |
1673 |
en |