HEAL DSpace

A hybrid guided local search for the vehicle-routing problem with intermediate replenishment facilities

Αποθετήριο DSpace/Manakin

Εμφάνιση απλής εγγραφής

dc.contributor.author Tarantilis, CD en
dc.contributor.author Zachariadis, EE en
dc.contributor.author Kiranoudis, CT en
dc.date.accessioned 2014-03-01T01:27:41Z
dc.date.available 2014-03-01T01:27:41Z
dc.date.issued 2008 en
dc.identifier.issn 1091-9856 en
dc.identifier.uri https://dspace.lib.ntua.gr/xmlui/handle/123456789/18540
dc.subject Guided local search en
dc.subject Replenishment facilities en
dc.subject Tabu search en
dc.subject Vehicle routing en
dc.subject VNS en
dc.subject.classification Computer Science, Interdisciplinary Applications en
dc.subject.classification Operations Research & Management Science en
dc.title A hybrid guided local search for the vehicle-routing problem with intermediate replenishment facilities en
heal.type journalArticle en
heal.identifier.primary 10.1287/ijoc.l070.0230 en
heal.identifier.secondary http://dx.doi.org/10.1287/ijoc.l070.0230 en
heal.language English en
heal.publicationDate 2008 en
heal.abstract We propose a three-step algorithmic framework for solving a new variant of the vehicle-routing problem (VRP) called the vehicle-routing problem with intermediate replenishment facilities (VRPIRF). The aim of this problem is to determine optimal routes for a fleet of vehicles that can renew their capacity at intermediate replenishment stations. Although this problem is often met in real-life scenarios of transportation logistics, it has not received much attention by researchers. Our proposed framework employs a combination of algorithmic blocks based on powerful metaheuristic methodologies designed to achieve a desirable intensification and diversification interplay. In the first step of the solution approach, the initial solution is obtained by a cost-saving construction heuristic. In the second step, the initial solution is improved by employing tabu search within the variable neighborhood search methodology. Finally, guided local search is applied in the third step, to eliminate low-quality features from the final solution produced. The proposed algorithmic framework was successfully applied to benchmark instances in the literature, generating several new best solutions. To motivate the proposed algorithmic choices and test the robustness of the algorithm, we also developed new classes of VRPIRF benchmark instances with diverse problem characteristics. © 2008 INFORMS. en
heal.publisher INFORMS en
heal.journalName INFORMS Journal on Computing en
dc.identifier.doi 10.1287/ijoc.l070.0230 en
dc.identifier.isi ISI:000254140400015 en
dc.identifier.volume 20 en
dc.identifier.issue 1 en
dc.identifier.spage 154 en
dc.identifier.epage 168 en


Αρχεία σε αυτό το τεκμήριο

Αρχεία Μέγεθος Μορφότυπο Προβολή

Δεν υπάρχουν αρχεία που σχετίζονται με αυτό το τεκμήριο.

Αυτό το τεκμήριο εμφανίζεται στην ακόλουθη συλλογή(ές)

Εμφάνιση απλής εγγραφής