dc.contributor.author |
Nikolakopoulos, A |
en |
dc.contributor.author |
Sarimveis, H |
en |
dc.date.accessioned |
2014-03-01T01:27:42Z |
|
dc.date.available |
2014-03-01T01:27:42Z |
|
dc.date.issued |
2008 |
en |
dc.identifier.issn |
0952-1976 |
en |
dc.identifier.uri |
https://dspace.lib.ntua.gr/xmlui/handle/123456789/18545 |
|
dc.subject |
DNA sequencing with errors |
en |
dc.subject |
Metaheuristics |
en |
dc.subject |
Sequencing by hybridization |
en |
dc.subject |
Traveling salesman problem |
en |
dc.subject.classification |
Automation & Control Systems |
en |
dc.subject.classification |
Computer Science, Artificial Intelligence |
en |
dc.subject.classification |
Engineering, Multidisciplinary |
en |
dc.subject.classification |
Engineering, Electrical & Electronic |
en |
dc.subject.other |
DNA sequences |
en |
dc.subject.other |
Error analysis |
en |
dc.subject.other |
Problem solving |
en |
dc.subject.other |
Traveling salesman problem |
en |
dc.subject.other |
DNA sequencing with errors |
en |
dc.subject.other |
Metaheuristics |
en |
dc.subject.other |
Sequencing by hybridization |
en |
dc.subject.other |
Heuristic methods |
en |
dc.title |
A metaheuristic approach for the sequencing by hybridization problem with positive and negative errors |
en |
heal.type |
journalArticle |
en |
heal.identifier.primary |
10.1016/j.engappai.2007.03.004 |
en |
heal.identifier.secondary |
http://dx.doi.org/10.1016/j.engappai.2007.03.004 |
en |
heal.language |
English |
en |
heal.publicationDate |
2008 |
en |
heal.abstract |
This work introduces a metaheuristic method for the reconstruction of the DNA string from its l-mer content in the presence oflarge amounts of positive and negative errors. The procedure consists of three parts: the formulation of the problem as an asymmetric traveling salesman problem (ATSP), a technique for handling the positive errors and an optimization algorithm that solves the formulated problem. The optimization algorithm is a variation of the threshold accepting method with intense local search and its function is controlled by a size diminishing shell. The optimization algorithm is used consecutively on ATSPs of continuously decreasing sizes till it reaches a final solution. The proposed method provides solutions of better quality compared to algorithms in the recent bibliography. (c) 2007 Elsevier Ltd. All rights reserved. |
en |
heal.publisher |
PERGAMON-ELSEVIER SCIENCE LTD |
en |
heal.journalName |
Engineering Applications of Artificial Intelligence |
en |
dc.identifier.doi |
10.1016/j.engappai.2007.03.004 |
en |
dc.identifier.isi |
ISI:000255316600009 |
en |
dc.identifier.volume |
21 |
en |
dc.identifier.issue |
2 |
en |
dc.identifier.spage |
247 |
en |
dc.identifier.epage |
258 |
en |