dc.contributor.author |
Motreanu, D |
en |
dc.contributor.author |
Motreanu, VV |
en |
dc.contributor.author |
Papageorgiou, NS |
en |
dc.date.accessioned |
2014-03-01T01:27:42Z |
|
dc.date.available |
2014-03-01T01:27:42Z |
|
dc.date.issued |
2008 |
en |
dc.identifier.issn |
0362-546X |
en |
dc.identifier.uri |
https://dspace.lib.ntua.gr/xmlui/handle/123456789/18556 |
|
dc.subject |
Degree map |
en |
dc.subject |
Elliptic boundary value problem |
en |
dc.subject |
Multiple nontrivial solutions |
en |
dc.subject |
Operator of type (S)+ |
en |
dc.subject |
p-Laplacian |
en |
dc.subject |
Weighted eigenvalue problem |
en |
dc.subject.classification |
Mathematics, Applied |
en |
dc.subject.classification |
Mathematics |
en |
dc.subject.other |
Boundary value problems |
en |
dc.subject.other |
Eigenvalues and eigenfunctions |
en |
dc.subject.other |
Mathematical operators |
en |
dc.subject.other |
Nonlinear equations |
en |
dc.subject.other |
Problem solving |
en |
dc.subject.other |
Degree map |
en |
dc.subject.other |
Multiple nontrivial solutions |
en |
dc.subject.other |
Weighted eigenvalue problem |
en |
dc.subject.other |
Theorem proving |
en |
dc.title |
A multiplicity theorem for problems with the p-Laplacian |
en |
heal.type |
journalArticle |
en |
heal.identifier.primary |
10.1016/j.na.2006.12.002 |
en |
heal.identifier.secondary |
http://dx.doi.org/10.1016/j.na.2006.12.002 |
en |
heal.language |
English |
en |
heal.publicationDate |
2008 |
en |
heal.abstract |
We consider nonlinear elliptic equations driven by the p-Laplacian differential operator. Using degree theoretic arguments based on the degree map for operators of type (S)(+), we prove the existence of two nontrivial smooth solutions, one of which is of constant sign. (C) 2007 Elsevier Ltd. All rights reserved. |
en |
heal.publisher |
PERGAMON-ELSEVIER SCIENCE LTD |
en |
heal.journalName |
Nonlinear Analysis, Theory, Methods and Applications |
en |
dc.identifier.doi |
10.1016/j.na.2006.12.002 |
en |
dc.identifier.isi |
ISI:000253439500027 |
en |
dc.identifier.volume |
68 |
en |
dc.identifier.issue |
4 |
en |
dc.identifier.spage |
1016 |
en |
dc.identifier.epage |
1027 |
en |