dc.contributor.author |
Barbarosou, MP |
en |
dc.contributor.author |
Maratos, NG |
en |
dc.date.accessioned |
2014-03-01T01:27:46Z |
|
dc.date.available |
2014-03-01T01:27:46Z |
|
dc.date.issued |
2008 |
en |
dc.identifier.issn |
1045-9227 |
en |
dc.identifier.uri |
https://dspace.lib.ntua.gr/xmlui/handle/123456789/18564 |
|
dc.subject |
Constrained optimization |
en |
dc.subject |
Convergence |
en |
dc.subject |
Convex and nonconvex problems |
en |
dc.subject |
Recurrent neural networks |
en |
dc.subject.classification |
Computer Science, Artificial Intelligence |
en |
dc.subject.classification |
Computer Science, Hardware & Architecture |
en |
dc.subject.classification |
Computer Science, Theory & Methods |
en |
dc.subject.classification |
Engineering, Electrical & Electronic |
en |
dc.subject.other |
Constraint theory |
en |
dc.subject.other |
Global optimization |
en |
dc.subject.other |
Image classification |
en |
dc.subject.other |
Network protocols |
en |
dc.subject.other |
Neural networks |
en |
dc.subject.other |
Optimization |
en |
dc.subject.other |
Problem solving |
en |
dc.subject.other |
Recurrent neural networks |
en |
dc.subject.other |
Reinforcement learning |
en |
dc.subject.other |
Sensor networks |
en |
dc.subject.other |
Vegetation |
en |
dc.subject.other |
Accurate |
en |
dc.subject.other |
Constrained optimization problems |
en |
dc.subject.other |
Convergence |
en |
dc.subject.other |
Convex and nonconvex problems |
en |
dc.subject.other |
Convex optimization problems |
en |
dc.subject.other |
Efficient |
en |
dc.subject.other |
Exponential convergence rates |
en |
dc.subject.other |
Global convergences |
en |
dc.subject.other |
Gradient projections |
en |
dc.subject.other |
Local convergences |
en |
dc.subject.other |
Neural-network |
en |
dc.subject.other |
Nonconvex |
en |
dc.subject.other |
Numerical results |
en |
dc.subject.other |
Optimization problems |
en |
dc.subject.other |
Tangent spaces |
en |
dc.subject.other |
Constrained optimization |
en |
dc.subject.other |
algorithm |
en |
dc.subject.other |
article |
en |
dc.subject.other |
artificial neural network |
en |
dc.subject.other |
computer simulation |
en |
dc.subject.other |
feedback system |
en |
dc.subject.other |
mathematical computing |
en |
dc.subject.other |
theoretical model |
en |
dc.subject.other |
Algorithms |
en |
dc.subject.other |
Computer Simulation |
en |
dc.subject.other |
Feedback |
en |
dc.subject.other |
Models, Theoretical |
en |
dc.subject.other |
Neural Networks (Computer) |
en |
dc.subject.other |
Numerical Analysis, Computer-Assisted |
en |
dc.title |
A nonfeasible gradient projection recurrent neural network for equality-constrained optimization problems |
en |
heal.type |
journalArticle |
en |
heal.identifier.primary |
10.1109/TNN.2008.2000993 |
en |
heal.identifier.secondary |
http://dx.doi.org/10.1109/TNN.2008.2000993 |
en |
heal.language |
English |
en |
heal.publicationDate |
2008 |
en |
heal.abstract |
In this paper, a recurrent neural network for both convex and nonconvex equality-constrained optimization problems is proposed, which makes use of a cost gradient projection onto the tangent space of the constraints. The proposed neural network constructs a generically nonfeasible trajectory, satisfying the constraints only as t → infin;. Local convergence results are given that do not assume convexity of the optimization problem to be solved. Global convergence results are established for convex optimization problems. An exponential convergence rate is shown to hold both for the convex case and the nonconvex case. Numerical results indicate that the proposed method is efficient and accurate. © 2008 IEEE. |
en |
heal.publisher |
IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC |
en |
heal.journalName |
IEEE Transactions on Neural Networks |
en |
dc.identifier.doi |
10.1109/TNN.2008.2000993 |
en |
dc.identifier.isi |
ISI:000260119900001 |
en |
dc.identifier.volume |
19 |
en |
dc.identifier.issue |
10 |
en |
dc.identifier.spage |
1665 |
en |
dc.identifier.epage |
1677 |
en |