HEAL DSpace

A pattern recognition methodology for evaluation of load profiles and typical days of large electricity customers

Αποθετήριο DSpace/Manakin

Εμφάνιση απλής εγγραφής

dc.contributor.author Tsekouras, GJ en
dc.contributor.author Kotoulas, PB en
dc.contributor.author Tsirekis, CD en
dc.contributor.author Dialynas, EN en
dc.contributor.author Hatziargyriou, ND en
dc.date.accessioned 2014-03-01T01:27:47Z
dc.date.available 2014-03-01T01:27:47Z
dc.date.issued 2008 en
dc.identifier.issn 0378-7796 en
dc.identifier.uri https://dspace.lib.ntua.gr/xmlui/handle/123456789/18568
dc.subject Clustering algorithms en
dc.subject Fuzzy k-means en
dc.subject Hierarchical clustering en
dc.subject k-Means en
dc.subject Load profiles en
dc.subject Pattern recognition en
dc.subject Self-organizing map en
dc.subject.classification Engineering, Electrical & Electronic en
dc.subject.other Clustering algorithms en
dc.subject.other Electric loads en
dc.subject.other Fuzzy systems en
dc.subject.other Optimization en
dc.subject.other Parameter estimation en
dc.subject.other Fuzzy k-means en
dc.subject.other Hierarchical clustering en
dc.subject.other k-Means en
dc.subject.other Load profiles en
dc.subject.other Self-organizing map en
dc.subject.other Pattern recognition en
dc.title A pattern recognition methodology for evaluation of load profiles and typical days of large electricity customers en
heal.type journalArticle en
heal.identifier.primary 10.1016/j.epsr.2008.01.010 en
heal.identifier.secondary http://dx.doi.org/10.1016/j.epsr.2008.01.010 en
heal.language English en
heal.publicationDate 2008 en
heal.abstract This paper describes a pattern recognition methodology for the classification of the daily chronological load curves of each large electricity customer, in order to estimate his typical days and his respective representative daily load profiles. It is based on pattern recognition methods, such as k-means, self-organized maps (SOM), fuzzy k-means and hierarchical clustering, which are theoretically described and properly adapted. The parameters of each clustering method are properly selected by an optimization process, which is separately applied for each one of six adequacy measures. The results can be used for the short-term and mid-term load forecasting of each consumer, for the choice of the proper tariffs and the feasibility studies of demand side management programs. This methodology is analytically applied for one medium voltage industrial customer and synoptically for a set of medium voltage customers of the Greek power system. The results of the clustering methods are presented and discussed. (C) 2008 Elsevier B.V. All rights reserved. en
heal.publisher ELSEVIER SCIENCE SA en
heal.journalName Electric Power Systems Research en
dc.identifier.doi 10.1016/j.epsr.2008.01.010 en
dc.identifier.isi ISI:000257619800003 en
dc.identifier.volume 78 en
dc.identifier.issue 9 en
dc.identifier.spage 1494 en
dc.identifier.epage 1510 en


Αρχεία σε αυτό το τεκμήριο

Αρχεία Μέγεθος Μορφότυπο Προβολή

Δεν υπάρχουν αρχεία που σχετίζονται με αυτό το τεκμήριο.

Αυτό το τεκμήριο εμφανίζεται στην ακόλουθη συλλογή(ές)

Εμφάνιση απλής εγγραφής