dc.contributor.author |
Tsekouras, GJ |
en |
dc.contributor.author |
Kotoulas, PB |
en |
dc.contributor.author |
Tsirekis, CD |
en |
dc.contributor.author |
Dialynas, EN |
en |
dc.contributor.author |
Hatziargyriou, ND |
en |
dc.date.accessioned |
2014-03-01T01:27:47Z |
|
dc.date.available |
2014-03-01T01:27:47Z |
|
dc.date.issued |
2008 |
en |
dc.identifier.issn |
0378-7796 |
en |
dc.identifier.uri |
https://dspace.lib.ntua.gr/xmlui/handle/123456789/18568 |
|
dc.subject |
Clustering algorithms |
en |
dc.subject |
Fuzzy k-means |
en |
dc.subject |
Hierarchical clustering |
en |
dc.subject |
k-Means |
en |
dc.subject |
Load profiles |
en |
dc.subject |
Pattern recognition |
en |
dc.subject |
Self-organizing map |
en |
dc.subject.classification |
Engineering, Electrical & Electronic |
en |
dc.subject.other |
Clustering algorithms |
en |
dc.subject.other |
Electric loads |
en |
dc.subject.other |
Fuzzy systems |
en |
dc.subject.other |
Optimization |
en |
dc.subject.other |
Parameter estimation |
en |
dc.subject.other |
Fuzzy k-means |
en |
dc.subject.other |
Hierarchical clustering |
en |
dc.subject.other |
k-Means |
en |
dc.subject.other |
Load profiles |
en |
dc.subject.other |
Self-organizing map |
en |
dc.subject.other |
Pattern recognition |
en |
dc.title |
A pattern recognition methodology for evaluation of load profiles and typical days of large electricity customers |
en |
heal.type |
journalArticle |
en |
heal.identifier.primary |
10.1016/j.epsr.2008.01.010 |
en |
heal.identifier.secondary |
http://dx.doi.org/10.1016/j.epsr.2008.01.010 |
en |
heal.language |
English |
en |
heal.publicationDate |
2008 |
en |
heal.abstract |
This paper describes a pattern recognition methodology for the classification of the daily chronological load curves of each large electricity customer, in order to estimate his typical days and his respective representative daily load profiles. It is based on pattern recognition methods, such as k-means, self-organized maps (SOM), fuzzy k-means and hierarchical clustering, which are theoretically described and properly adapted. The parameters of each clustering method are properly selected by an optimization process, which is separately applied for each one of six adequacy measures. The results can be used for the short-term and mid-term load forecasting of each consumer, for the choice of the proper tariffs and the feasibility studies of demand side management programs. This methodology is analytically applied for one medium voltage industrial customer and synoptically for a set of medium voltage customers of the Greek power system. The results of the clustering methods are presented and discussed. (C) 2008 Elsevier B.V. All rights reserved. |
en |
heal.publisher |
ELSEVIER SCIENCE SA |
en |
heal.journalName |
Electric Power Systems Research |
en |
dc.identifier.doi |
10.1016/j.epsr.2008.01.010 |
en |
dc.identifier.isi |
ISI:000257619800003 |
en |
dc.identifier.volume |
78 |
en |
dc.identifier.issue |
9 |
en |
dc.identifier.spage |
1494 |
en |
dc.identifier.epage |
1510 |
en |