HEAL DSpace

A power-law approximation of the turbulent flow friction factor useful for the design and simulation of urban water networks

Αποθετήριο DSpace/Manakin

Εμφάνιση απλής εγγραφής

dc.contributor.author Koutsoyiannis, D en
dc.date.accessioned 2014-03-01T01:27:47Z
dc.date.available 2014-03-01T01:27:47Z
dc.date.issued 2008 en
dc.identifier.issn 1573-062X en
dc.identifier.uri https://dspace.lib.ntua.gr/xmlui/handle/123456789/18570
dc.subject Colebrook-White equation en
dc.subject Darcy-Weisbach equation en
dc.subject Friction factor en
dc.subject Manning equation en
dc.subject Pipe flow en
dc.subject Power law en
dc.subject Urban water networks en
dc.subject.other Approximation theory en
dc.subject.other Friction en
dc.subject.other Pipe flow en
dc.subject.other Surface roughness en
dc.subject.other Turbulent flow en
dc.subject.other Darcy law en
dc.subject.other friction en
dc.subject.other numerical model en
dc.subject.other pipe flow en
dc.subject.other power law en
dc.subject.other turbulent flow en
dc.subject.other Willia en
dc.title A power-law approximation of the turbulent flow friction factor useful for the design and simulation of urban water networks en
heal.type journalArticle en
heal.identifier.primary 10.1080/15730620701712325 en
heal.identifier.secondary http://dx.doi.org/10.1080/15730620701712325 en
heal.language English en
heal.publicationDate 2008 en
heal.abstract An approximation of the friction factor of the Colebrook-White equation is proposed, which is expressed as a power-law function of the pipe diameter and the energy gradient and is combined with the Darcy-Weisbach equation, thus yielding an overall power-law equation for turbulent pressurised pipe flow. This is a generalised Manning equation, whose exponents are not unique but depend on the pipe roughness. The parameters of this equation are determined by minimising the approximation error and are given either in tabulated form or as mathematical expressions of roughness. The maximum approximation errors are much smaller than other errors resulting from uncertainty and misspecification of design and simulation quantities and also much smaller than the errors in the original Manning and the Hazen-Willians equations. Both these can be obtained as special cases of the proposed generalised equation by setting the exponent parameters constant. However, for large roughness the original Manning equation improves in performance and becomes practically equivalent with the proposed generalised equation. Thus its use, particularly when the networks operate with free surface flow is absolutely justified. In pressurised conditions the proposed generalised Manning equation can be a valid alternative to the combination of the Colebrook-White and Darcy-Weisbach equations, having the advantage of simplicity and speed of calculation both in manual and computer mode. en
heal.publisher TAYLOR & FRANCIS LTD en
heal.journalName Urban Water Journal en
dc.identifier.doi 10.1080/15730620701712325 en
dc.identifier.isi ISI:000262437200003 en
dc.identifier.volume 5 en
dc.identifier.issue 2 en
dc.identifier.spage 107 en
dc.identifier.epage 115 en


Αρχεία σε αυτό το τεκμήριο

Αρχεία Μέγεθος Μορφότυπο Προβολή

Δεν υπάρχουν αρχεία που σχετίζονται με αυτό το τεκμήριο.

Αυτό το τεκμήριο εμφανίζεται στην ακόλουθη συλλογή(ές)

Εμφάνιση απλής εγγραφής