HEAL DSpace

A timestepper approach for the systematic bifurcation and stability analysis of polymer extrusion dynamics

Αποθετήριο DSpace/Manakin

Εμφάνιση απλής εγγραφής

dc.contributor.author Kavousanakis, ME en
dc.contributor.author Russo, L en
dc.contributor.author Siettos, CI en
dc.contributor.author Boudouvis, AG en
dc.contributor.author Georgiou, GC en
dc.date.accessioned 2014-03-01T01:27:48Z
dc.date.available 2014-03-01T01:27:48Z
dc.date.issued 2008 en
dc.identifier.issn 0377-0257 en
dc.identifier.uri https://dspace.lib.ntua.gr/xmlui/handle/123456789/18587
dc.subject Bifurcation analysis en
dc.subject Extrusion instabilities en
dc.subject Floquet multipliers en
dc.subject Oldroyd-B fluid en
dc.subject Poiseuille flow en
dc.subject Timestepper approach en
dc.subject.classification Mechanics en
dc.subject.other Bifurcation (mathematics) en
dc.subject.other Fluid mechanics en
dc.subject.other Matrix algebra en
dc.subject.other Non Newtonian liquids en
dc.subject.other Steady flow en
dc.subject.other Viscoelasticity en
dc.subject.other Extrusion instabilities en
dc.subject.other Floquet multipliers en
dc.subject.other Timestepper approach en
dc.subject.other Extrusion en
dc.subject.other Bifurcation (mathematics) en
dc.subject.other Extrusion en
dc.subject.other Fluid mechanics en
dc.subject.other Matrix algebra en
dc.subject.other Non Newtonian liquids en
dc.subject.other Steady flow en
dc.subject.other Viscoelasticity en
dc.title A timestepper approach for the systematic bifurcation and stability analysis of polymer extrusion dynamics en
heal.type journalArticle en
heal.identifier.primary 10.1016/j.jnnfm.2007.11.002 en
heal.identifier.secondary http://dx.doi.org/10.1016/j.jnnfm.2007.11.002 en
heal.language English en
heal.publicationDate 2008 en
heal.abstract We discuss how matrix-free/timestepper algorithms can efficiently be used with dynamic non-Newtonian fluid mechanics simulators in performing systematic stability/bifurcation analysis. The timestepper approach to bifurcation analysis of large-scale systems is applied to the plane Poiseuille flow of an Oldroyd-B fluid with non-monotonic slip at the wall, in order to further investigate a mechanism of extrusion instability based on the combination of viscoelasticity and non-monotonic slip. Due to the non-monotonicity of the slip equation the resulting steady-state flow curve is non-monotonic and unstable steady states appear in the negative-slope regime. It has been known that self-sustained oscillations of the pressure gradient are obtained when an unstable steady state is perturbed [M.M. Fyrillas, G.C. Georgiou, D. Vlassopoulos, S.G. Hatzikiriakos, A mechanism for extrusion instabilities in polymer melts, Polymer Eng. Sci. 39 (1999) 2498-2504]. Treating the simulator of a distributed parameter model describing the dynamics of the above flow as an input-output ""black-box"" timestepper of the state variables, stable and unstable branches of both equilibrium and periodic oscillating solutions are computed and their stability is examined. It is shown for the first time how equilibrium solutions lose stability to oscillating ones through a subcritical Hopf bifurcation point which generates a branch of unstable limit cycles and how the stable periodic solutions lose their stability through a critical point which marks the onset of the unstable limit cycles. This implicates the coexistence of stable equilibria with stable and unstable periodic solutions in a narrow range of volumetric flow rates. © 2007 Elsevier B.V. All rights reserved. en
heal.publisher ELSEVIER SCIENCE BV en
heal.journalName Journal of Non-Newtonian Fluid Mechanics en
dc.identifier.doi 10.1016/j.jnnfm.2007.11.002 en
dc.identifier.isi ISI:000256605100006 en
dc.identifier.volume 151 en
dc.identifier.issue 1-3 en
dc.identifier.spage 59 en
dc.identifier.epage 68 en


Αρχεία σε αυτό το τεκμήριο

Αρχεία Μέγεθος Μορφότυπο Προβολή

Δεν υπάρχουν αρχεία που σχετίζονται με αυτό το τεκμήριο.

Αυτό το τεκμήριο εμφανίζεται στην ακόλουθη συλλογή(ές)

Εμφάνιση απλής εγγραφής