HEAL DSpace

Aerodynamic shape optimization using first and second Order adjoint and direct approaches

Αποθετήριο DSpace/Manakin

Εμφάνιση απλής εγγραφής

dc.contributor.author Papadimitriou, DI en
dc.contributor.author Giannakoglou, KC en
dc.date.accessioned 2014-03-01T01:27:50Z
dc.date.available 2014-03-01T01:27:50Z
dc.date.issued 2008 en
dc.identifier.issn 1134-3060 en
dc.identifier.uri https://dspace.lib.ntua.gr/xmlui/handle/123456789/18600
dc.subject Adjoint Method en
dc.subject Entropy Generation en
dc.subject Objective Function en
dc.subject Performance Optimization en
dc.subject Point of View en
dc.subject Pressure Distribution en
dc.subject Shape Optimization en
dc.subject Direct Differentiation Method en
dc.subject Quasi Newton en
dc.subject Second Order en
dc.subject.classification Computer Science, Interdisciplinary Applications en
dc.subject.classification Engineering, Multidisciplinary en
dc.subject.classification Mathematics, Interdisciplinary Applications en
dc.subject.other Adjoint en
dc.subject.other Adjoint approaches en
dc.subject.other Adjoint formulations en
dc.subject.other Adjoint methods en
dc.subject.other Aerodynamic shape optimizations en
dc.subject.other Cascade flows en
dc.subject.other Design variables en
dc.subject.other Direct approaches en
dc.subject.other Direct differentiation methods en
dc.subject.other Direct differentiations en
dc.subject.other Entropy generations en
dc.subject.other Field integrals en
dc.subject.other Hessian matrices en
dc.subject.other Inverse designs en
dc.subject.other Objective functions en
dc.subject.other Optimization schemes en
dc.subject.other Quasi newtons en
dc.subject.other Second orders en
dc.subject.other Second-order sensitivities en
dc.subject.other Sensitivity expressions en
dc.subject.other Solid walls en
dc.subject.other Total pressures en
dc.subject.other Viscous loss en
dc.subject.other Aerodynamics en
dc.subject.other Distribution functions en
dc.subject.other Functions en
dc.subject.other Inverse problems en
dc.subject.other Shape optimization en
dc.title Aerodynamic shape optimization using first and second Order adjoint and direct approaches en
heal.type journalArticle en
heal.identifier.primary 10.1007/s11831-008-9025-y en
heal.identifier.secondary http://dx.doi.org/10.1007/s11831-008-9025-y en
heal.language English en
heal.publicationDate 2008 en
heal.abstract This paper focuses on discrete and continuous adjoint approaches and direct differentiation methods that can efficiently be used in aerodynamic shape optimization problems. The advantage of the adjoint approach is the computation of the gradient of the objective function at cost which does not depend upon the number of design variables. An extra advantage of the formulation presented below, for the computation of either first or second order sensitivities, is that the resulting sensitivity expressions are free of field integrals even if the objective function is a field integral. This is demonstrated using three possible objective functions for use in internal aerodynamic problems; the first objective is for inverse design problems where a target pressure distribution along the solid walls must be reproduced; the other two quantify viscous losses in duct or cascade flows, cast as either the reduction in total pressure between the inlet and outlet or the field integral of entropy generation. From the mathematical point of view, the three functions are defined over different parts of the domain or its boundaries, and this strongly affects the adjoint formulation. In the second part of this paper, the same discrete and continuous adjoint formulations are combined with direct differentiation methods to compute the Hessian matrix of the objective function. Although the direct differentiation for the computation of the gradient is time consuming, it may support the adjoint method to calculate the exact Hessian matrix components with the minimum CPU cost. Since, however, the CPU cost is proportional to the number of design variables, a well performing optimization scheme, based on the exactly computed Hessian during the starting cycle and a quasi Newton (BFGS) scheme during the next cycles, is proposed. © 2008 CIMNE, Barcelona, Spain. en
heal.publisher SPRINGER en
heal.journalName Archives of Computational Methods in Engineering en
dc.identifier.doi 10.1007/s11831-008-9025-y en
dc.identifier.isi ISI:000260306400002 en
dc.identifier.volume 15 en
dc.identifier.issue 4 en
dc.identifier.spage 447 en
dc.identifier.epage 488 en


Αρχεία σε αυτό το τεκμήριο

Αρχεία Μέγεθος Μορφότυπο Προβολή

Δεν υπάρχουν αρχεία που σχετίζονται με αυτό το τεκμήριο.

Αυτό το τεκμήριο εμφανίζεται στην ακόλουθη συλλογή(ές)

Εμφάνιση απλής εγγραφής