dc.contributor.author |
Mitrakos, D |
en |
dc.contributor.author |
Jokiniemi, J |
en |
dc.contributor.author |
Backman, U |
en |
dc.contributor.author |
Housiadas, C |
en |
dc.date.accessioned |
2014-03-01T01:27:50Z |
|
dc.date.available |
2014-03-01T01:27:50Z |
|
dc.date.issued |
2008 |
en |
dc.identifier.issn |
1388-0764 |
en |
dc.identifier.uri |
https://dspace.lib.ntua.gr/xmlui/handle/123456789/18601 |
|
dc.subject |
Aerosol modelling |
en |
dc.subject |
Aerosol reactors |
en |
dc.subject |
Computational fluid-particle dynamics |
en |
dc.subject |
Nanomanufacturing |
en |
dc.subject |
Silver nanoparticles |
en |
dc.subject.classification |
Chemistry, Multidisciplinary |
en |
dc.subject.classification |
Nanoscience & Nanotechnology |
en |
dc.subject.classification |
Materials Science, Multidisciplinary |
en |
dc.subject.other |
Aerosols |
en |
dc.subject.other |
Atmospheric aerosols |
en |
dc.subject.other |
Coagulation |
en |
dc.subject.other |
Computational fluid dynamics |
en |
dc.subject.other |
Computational methods |
en |
dc.subject.other |
Control theory |
en |
dc.subject.other |
Dynamics |
en |
dc.subject.other |
Flow simulation |
en |
dc.subject.other |
Nanoparticles |
en |
dc.subject.other |
Nanostructured materials |
en |
dc.subject.other |
Nanostructures |
en |
dc.subject.other |
Nucleation |
en |
dc.subject.other |
Particle size analysis |
en |
dc.subject.other |
Aerosol flows |
en |
dc.subject.other |
Combined simulations |
en |
dc.subject.other |
Computational fluid-particle dynamics |
en |
dc.subject.other |
Computational fluids |
en |
dc.subject.other |
Computational simplicities |
en |
dc.subject.other |
Computed flows |
en |
dc.subject.other |
Correction factors |
en |
dc.subject.other |
Experimental datum |
en |
dc.subject.other |
Flow characteristics |
en |
dc.subject.other |
High purities |
en |
dc.subject.other |
Homogeneous nucleations |
en |
dc.subject.other |
Multi-dimensional |
en |
dc.subject.other |
Nanomanufacturing |
en |
dc.subject.other |
Nucleation rates |
en |
dc.subject.other |
Particle dynamics |
en |
dc.subject.other |
Particle nucleations |
en |
dc.subject.other |
Phase syntheses |
en |
dc.subject.other |
Plug flow reactors |
en |
dc.subject.other |
Plug flows |
en |
dc.subject.other |
Practical |
en |
dc.subject.other |
Reasonable accuracies |
en |
dc.subject.other |
Silver nanoparticles |
en |
dc.subject.other |
Silver powders |
en |
dc.subject.other |
SIMPLE models |
en |
dc.subject.other |
Tube furnaces |
en |
dc.subject.other |
Silver |
en |
dc.subject.other |
nanoparticle |
en |
dc.subject.other |
silver |
en |
dc.subject.other |
aerosol |
en |
dc.subject.other |
article |
en |
dc.subject.other |
computational fluid dynamics |
en |
dc.subject.other |
nanofabrication |
en |
dc.subject.other |
particle size |
en |
dc.subject.other |
plug flow reactor |
en |
dc.subject.other |
priority journal |
en |
dc.subject.other |
synthesis |
en |
dc.subject.other |
vapor |
en |
dc.title |
Aerosol flow in a tube furnace reactor of gas-phase synthesised silver nanoparticles |
en |
heal.type |
journalArticle |
en |
heal.identifier.primary |
10.1007/s11051-008-9439-3 |
en |
heal.identifier.secondary |
http://dx.doi.org/10.1007/s11051-008-9439-3 |
en |
heal.language |
English |
en |
heal.publicationDate |
2008 |
en |
heal.abstract |
In a previous work, gas-phase synthesis of silver nanoparticles through evaporation of silver powder and subsequent particle nucleation by cooling was shown to be a viable method for achieving high purity silver nanoparticles (Backman et al. J Nanopart Res 4:325-335, 2002). In order to control the size of the produced nanoparticles, careful design of the reactor is required with respect to thermal and flow characteristics. In the present work, the silver nanoparticle reactor is rigorously simulated by means of multidimensional computational fluid and particle dynamics. The CFD-computed flow is input for a combined simulation of the vapour field and particle homogeneous nucleation, growth and coagulation. The results are compared with the experimental data and with the predictions from the usually employed simple model of an idealized plug flow reactor. The multidimensional CFD-based analysis is shown to explain and help understand different aspects of the reactor operation and size distribution of the particles produced. Yet the simple plug flow method is found to provide reasonable accuracy when an appropriate correction factor is used for the nucleation rate. Considering its robustness and computational simplicity, the plug flow method can be qualified as adequate from the engineering practical point of view for the case of silver nanoparticle reactors. © 2008 Springer Science+Business Media B.V. |
en |
heal.publisher |
SPRINGER |
en |
heal.journalName |
Journal of Nanoparticle Research |
en |
dc.identifier.doi |
10.1007/s11051-008-9439-3 |
en |
dc.identifier.isi |
ISI:000263166900015 |
en |
dc.identifier.volume |
10 |
en |
dc.identifier.issue |
SUPPL. 1 |
en |
dc.identifier.spage |
153 |
en |
dc.identifier.epage |
161 |
en |