dc.contributor.author | Munoz-Fernandez, GA | en |
dc.contributor.author | Sarantopoulos, Y | en |
dc.contributor.author | Seoane-Sepulveda, JB | en |
dc.date.accessioned | 2014-03-01T01:27:52Z | |
dc.date.available | 2014-03-01T01:27:52Z | |
dc.date.issued | 2008 | en |
dc.identifier.issn | 0944-6532 | en |
dc.identifier.uri | https://dspace.lib.ntua.gr/xmlui/handle/123456789/18616 | |
dc.relation.uri | http://www.scopus.com/inward/record.url?eid=2-s2.0-45849118354&partnerID=40&md5=badcf018c2e66bba6186a69762f229d2 | en |
dc.subject.classification | Mathematics | en |
dc.title | An application of the Krein-Milman theorem to Bernstein and Markov inequalities | en |
heal.type | journalArticle | en |
heal.language | English | en |
heal.publicationDate | 2008 | en |
heal.abstract | Given a trinomial of the form p(x) = ax(m) + bx(n) + c with a, b, c is an element of R, we obtain, explicitly, the best possible constant M.,,(x) in the inequality vertical bar p'(x)vertical bar <= M-m,M-n(x).parallel to p parallel to, where x is an element of [-1, 1] is fixed and parallel to p parallel to is the sup norm of p over [-1, 1]. This answers a question to an old problem, first studied by Markov, for a large family of trinomials. We obtain the mappings M-m,M-n(x) by means of classical convex analysis techniques, in particular, using the Krein-Milman approach. | en |
heal.publisher | HELDERMANN VERLAG | en |
heal.journalName | Journal of Convex Analysis | en |
dc.identifier.isi | ISI:000257342300008 | en |
dc.identifier.volume | 15 | en |
dc.identifier.issue | 2 | en |
dc.identifier.spage | 299 | en |
dc.identifier.epage | 312 | en |
Αρχεία | Μέγεθος | Μορφότυπο | Προβολή |
---|---|---|---|
Δεν υπάρχουν αρχεία που σχετίζονται με αυτό το τεκμήριο. |