dc.contributor.author |
Karellas, S |
en |
dc.contributor.author |
Karl, J |
en |
dc.contributor.author |
Kakaras, E |
en |
dc.date.accessioned |
2014-03-01T01:27:54Z |
|
dc.date.available |
2014-03-01T01:27:54Z |
|
dc.date.issued |
2008 |
en |
dc.identifier.issn |
0360-5442 |
en |
dc.identifier.uri |
https://dspace.lib.ntua.gr/xmlui/handle/123456789/18628 |
|
dc.subject |
Allothermal gasification |
en |
dc.subject |
Biomass |
en |
dc.subject |
Combines heat and power (CHP) |
en |
dc.subject |
Fuel cells |
en |
dc.subject |
Heatpipes |
en |
dc.subject |
Microturbines |
en |
dc.subject.classification |
Thermodynamics |
en |
dc.subject.classification |
Energy & Fuels |
en |
dc.subject.other |
Computer simulation |
en |
dc.subject.other |
Fuel cells |
en |
dc.subject.other |
Gasification |
en |
dc.subject.other |
Heat pipes |
en |
dc.subject.other |
Innovation |
en |
dc.subject.other |
Allothermal gasification |
en |
dc.subject.other |
Combines heat and power (CHP) |
en |
dc.subject.other |
Microturbines |
en |
dc.subject.other |
Biomass |
en |
dc.subject.other |
Biomass |
en |
dc.subject.other |
Computer simulation |
en |
dc.subject.other |
Fuel cells |
en |
dc.subject.other |
Gasification |
en |
dc.subject.other |
Heat pipes |
en |
dc.subject.other |
Innovation |
en |
dc.subject.other |
biomass |
en |
dc.subject.other |
fuel cell |
en |
dc.subject.other |
heat production |
en |
dc.subject.other |
project assessment |
en |
dc.subject.other |
simulation |
en |
dc.subject.other |
turbine |
en |
dc.subject.other |
Chandipura virus |
en |
dc.title |
An innovative biomass gasification process and its coupling with microturbine and fuel cell systems |
en |
heal.type |
journalArticle |
en |
heal.identifier.primary |
10.1016/j.energy.2007.06.006 |
en |
heal.identifier.secondary |
http://dx.doi.org/10.1016/j.energy.2007.06.006 |
en |
heal.language |
English |
en |
heal.publicationDate |
2008 |
en |
heal.abstract |
The use of biomass, wood in particular, is one of the oldest forms of producing energy for heating or cooking. Nowadays, new technologies concerning the utilisation of biomass or waste residues are in demand and the trend to use them in decentralised applications for combined heat and power (CHP) production provides an attractive challenge to develop them. At the TU Munchen an innovative allothermal gasification technology, the Biomass Heatpipe Reformer (BioHPR) has been developed. The aim of this project was to integrate the technology of liquid metal heatpipes in the gasification process in order to produce a hydrogen rich product gas from biomass or residues. The gasification product can be further used in microturbine or SOFC systems. The present paper presents the aforementioned gasification technology, its coupling with innovative CHP systems (with microturbine or fuel cells) and investigates, through the simulation of these systems, the optimum conditions of the integrated systems in order to reach the highest possible efficiencies. (C) 2007 Elsevier Ltd. All rights reserved. |
en |
heal.publisher |
PERGAMON-ELSEVIER SCIENCE LTD |
en |
heal.journalName |
Energy |
en |
dc.identifier.doi |
10.1016/j.energy.2007.06.006 |
en |
dc.identifier.isi |
ISI:000253574700022 |
en |
dc.identifier.volume |
33 |
en |
dc.identifier.issue |
2 |
en |
dc.identifier.spage |
284 |
en |
dc.identifier.epage |
291 |
en |