dc.contributor.author |
You, Z |
en |
dc.contributor.author |
Huilgol, RR |
en |
dc.contributor.author |
Mitsoulis, E |
en |
dc.date.accessioned |
2014-03-01T01:27:56Z |
|
dc.date.available |
2014-03-01T01:27:56Z |
|
dc.date.issued |
2008 |
en |
dc.identifier.issn |
0020-7225 |
en |
dc.identifier.uri |
https://dspace.lib.ntua.gr/xmlui/handle/123456789/18645 |
|
dc.subject |
Analytical solution |
en |
dc.subject |
Lambert W function |
en |
dc.subject |
Papanastasiou model |
en |
dc.subject |
Steady shearing flow |
en |
dc.subject.classification |
Engineering, Multidisciplinary |
en |
dc.subject.other |
Channel flow |
en |
dc.subject.other |
Mathematical models |
en |
dc.subject.other |
Numerical methods |
en |
dc.subject.other |
Steady flow |
en |
dc.subject.other |
Stress analysis |
en |
dc.subject.other |
Tensors |
en |
dc.subject.other |
Lambert W functions |
en |
dc.subject.other |
Papanastasiou models |
en |
dc.subject.other |
Steady shearing flow |
en |
dc.subject.other |
Stress tensors |
en |
dc.subject.other |
Shear flow |
en |
dc.title |
Application of the Lambert W function to steady shearing flows of the Papanastasiou model |
en |
heal.type |
journalArticle |
en |
heal.identifier.primary |
10.1016/j.ijengsci.2008.02.002 |
en |
heal.identifier.secondary |
http://dx.doi.org/10.1016/j.ijengsci.2008.02.002 |
en |
heal.language |
English |
en |
heal.publicationDate |
2008 |
en |
heal.abstract |
Using the Lambert W function, the constitutive relation of the Papanastasiou model is inverted so that the second invariant of the first Rivlin-Ericksen tensor can be expressed as a function of the second invariant of the extra stress tensor. In steady shearing flows, this results in the magnitude of the shear rate becoming a function of the magnitude of the shear stress. Since the distribution of the latter is known explicitly in channel, Poiseuille and Couette flows, one can investigate the nature of analytical solutions in these flows. It is shown that explicit answers are found for channel and Poiseuille flows only, with the Couette flow requiring a numerical solution in general. From the channel flow results, it is obvious that there is a great amount of congruence between the predictions of the Papanastasiou model and the Bingham fluid. In turn, this lends further confidence to the application of the Papanastasiou model to study the flows of Bingham fluids. (C) 2008 Elsevier Ltd. All rights reserved. |
en |
heal.publisher |
PERGAMON-ELSEVIER SCIENCE LTD |
en |
heal.journalName |
International Journal of Engineering Science |
en |
dc.identifier.doi |
10.1016/j.ijengsci.2008.02.002 |
en |
dc.identifier.isi |
ISI:000257612200005 |
en |
dc.identifier.volume |
46 |
en |
dc.identifier.issue |
8 |
en |
dc.identifier.spage |
799 |
en |
dc.identifier.epage |
808 |
en |