HEAL DSpace

Artificial neural network models for the prediction of surface roughness in electrical discharge machining

Αποθετήριο DSpace/Manakin

Εμφάνιση απλής εγγραφής

dc.contributor.author Markopoulos, AP en
dc.contributor.author Manolakos, DE en
dc.contributor.author Vaxevanidis, NM en
dc.date.accessioned 2014-03-01T01:27:57Z
dc.date.available 2014-03-01T01:27:57Z
dc.date.issued 2008 en
dc.identifier.issn 0956-5515 en
dc.identifier.uri https://dspace.lib.ntua.gr/xmlui/handle/123456789/18650
dc.subject Artificial neural networks en
dc.subject Electrical discharge machining (EDM) en
dc.subject Modeling en
dc.subject Surface roughness en
dc.subject.classification Computer Science, Artificial Intelligence en
dc.subject.classification Engineering, Manufacturing en
dc.subject.other Electric discharges en
dc.subject.other Machining en
dc.subject.other Mathematical models en
dc.subject.other Surface roughness en
dc.subject.other Input parameters en
dc.subject.other Pulse current en
dc.subject.other Pulse duration en
dc.subject.other Neural networks en
dc.title Artificial neural network models for the prediction of surface roughness in electrical discharge machining en
heal.type journalArticle en
heal.identifier.primary 10.1007/s10845-008-0081-9 en
heal.identifier.secondary http://dx.doi.org/10.1007/s10845-008-0081-9 en
heal.language English en
heal.publicationDate 2008 en
heal.abstract In the present paper Artificial Neural Networks (ANNs) models are proposed for the prediction of surface roughness in Electrical Discharge Machining (EDM). For this purpose two well-known programs, namely Matlab® with associated toolboxes, as well as Netlab®, were emplo- yed. Training of the models was performed with data from an extensive series of EDM experiments on steel grades; the proposed models use the pulse current, the pulse duration, and the processed material as input parameters. The reported results indicate that the proposed ANNs models can satisfactorily predict the surface roughness in EDM. Moreover, they can be considered as valuable tools for the process planning for EDMachining. © 2008 Springer Science+Business Media, LLC. en
heal.publisher SPRINGER en
heal.journalName Journal of Intelligent Manufacturing en
dc.identifier.doi 10.1007/s10845-008-0081-9 en
dc.identifier.isi ISI:000256080900004 en
dc.identifier.volume 19 en
dc.identifier.issue 3 en
dc.identifier.spage 283 en
dc.identifier.epage 292 en


Αρχεία σε αυτό το τεκμήριο

Αρχεία Μέγεθος Μορφότυπο Προβολή

Δεν υπάρχουν αρχεία που σχετίζονται με αυτό το τεκμήριο.

Αυτό το τεκμήριο εμφανίζεται στην ακόλουθη συλλογή(ές)

Εμφάνιση απλής εγγραφής