dc.contributor.author |
Markopoulos, AP |
en |
dc.contributor.author |
Manolakos, DE |
en |
dc.contributor.author |
Vaxevanidis, NM |
en |
dc.date.accessioned |
2014-03-01T01:27:57Z |
|
dc.date.available |
2014-03-01T01:27:57Z |
|
dc.date.issued |
2008 |
en |
dc.identifier.issn |
0956-5515 |
en |
dc.identifier.uri |
https://dspace.lib.ntua.gr/xmlui/handle/123456789/18650 |
|
dc.subject |
Artificial neural networks |
en |
dc.subject |
Electrical discharge machining (EDM) |
en |
dc.subject |
Modeling |
en |
dc.subject |
Surface roughness |
en |
dc.subject.classification |
Computer Science, Artificial Intelligence |
en |
dc.subject.classification |
Engineering, Manufacturing |
en |
dc.subject.other |
Electric discharges |
en |
dc.subject.other |
Machining |
en |
dc.subject.other |
Mathematical models |
en |
dc.subject.other |
Surface roughness |
en |
dc.subject.other |
Input parameters |
en |
dc.subject.other |
Pulse current |
en |
dc.subject.other |
Pulse duration |
en |
dc.subject.other |
Neural networks |
en |
dc.title |
Artificial neural network models for the prediction of surface roughness in electrical discharge machining |
en |
heal.type |
journalArticle |
en |
heal.identifier.primary |
10.1007/s10845-008-0081-9 |
en |
heal.identifier.secondary |
http://dx.doi.org/10.1007/s10845-008-0081-9 |
en |
heal.language |
English |
en |
heal.publicationDate |
2008 |
en |
heal.abstract |
In the present paper Artificial Neural Networks (ANNs) models are proposed for the prediction of surface roughness in Electrical Discharge Machining (EDM). For this purpose two well-known programs, namely Matlab® with associated toolboxes, as well as Netlab®, were emplo- yed. Training of the models was performed with data from an extensive series of EDM experiments on steel grades; the proposed models use the pulse current, the pulse duration, and the processed material as input parameters. The reported results indicate that the proposed ANNs models can satisfactorily predict the surface roughness in EDM. Moreover, they can be considered as valuable tools for the process planning for EDMachining. © 2008 Springer Science+Business Media, LLC. |
en |
heal.publisher |
SPRINGER |
en |
heal.journalName |
Journal of Intelligent Manufacturing |
en |
dc.identifier.doi |
10.1007/s10845-008-0081-9 |
en |
dc.identifier.isi |
ISI:000256080900004 |
en |
dc.identifier.volume |
19 |
en |
dc.identifier.issue |
3 |
en |
dc.identifier.spage |
283 |
en |
dc.identifier.epage |
292 |
en |