dc.contributor.author |
Riziotis, VA |
en |
dc.contributor.author |
Voutsinas, SG |
en |
dc.contributor.author |
Politis, ES |
en |
dc.contributor.author |
Chaviaropoulos, PK |
en |
dc.date.accessioned |
2014-03-01T01:27:57Z |
|
dc.date.available |
2014-03-01T01:27:57Z |
|
dc.date.issued |
2008 |
en |
dc.identifier.issn |
1095-4244 |
en |
dc.identifier.uri |
https://dspace.lib.ntua.gr/xmlui/handle/123456789/18651 |
|
dc.subject |
Aeroelastic stability |
en |
dc.subject |
Eigenvalue modal analysis |
en |
dc.subject |
Rotor aerodynamics |
en |
dc.subject.classification |
Energy & Fuels |
en |
dc.subject.classification |
Engineering, Mechanical |
en |
dc.subject.other |
Airfoils |
en |
dc.subject.other |
Damping |
en |
dc.subject.other |
Eigenvalues and eigenfunctions |
en |
dc.subject.other |
Modal analysis |
en |
dc.subject.other |
Aeroelastic stability |
en |
dc.subject.other |
Eigenvalue modal analysis |
en |
dc.subject.other |
Rotor aerodynamics |
en |
dc.subject.other |
Wind turbines |
en |
dc.subject.other |
Airfoils |
en |
dc.subject.other |
Damping |
en |
dc.subject.other |
Eigenvalues and eigenfunctions |
en |
dc.subject.other |
Modal analysis |
en |
dc.subject.other |
Wind turbines |
en |
dc.subject.other |
aerodynamics |
en |
dc.subject.other |
design |
en |
dc.subject.other |
eigenvalue |
en |
dc.subject.other |
model |
en |
dc.subject.other |
optimization |
en |
dc.subject.other |
wind turbine |
en |
dc.title |
Assessment of passive instability suppression means on pitch-regulated wind turbines |
en |
heal.type |
journalArticle |
en |
heal.identifier.primary |
10.1002/we.241 |
en |
heal.identifier.secondary |
http://dx.doi.org/10.1002/we.241 |
en |
heal.language |
English |
en |
heal.publicationDate |
2008 |
en |
heal.abstract |
The significance of three types of design modifications in view of defining passive means to extend the stability bounds of modern wind turbines is assessed in this paper. The first concerns the use of optimized airfoil shapes on a fixed blade planform while the other two concern the increase of structural flexibility by either bringing closer the flap and lead-lag mode frequencies or introducing a soft yaw connection. Such an exploration of the stability envelope aims at providing the necessary understanding of the mechanisms that control aeroelastic damping and therefore at identifying means for improving the stability behaviour of the lowest damped system modes. Stability calculations are performed in the context of linear eigenvalue analysis using a state-of-the-art stability tool. The model accounts for the full wind turbine configuration and the eigenvalue problem is formulated with reference to the non-rotating (ground-fixed) frame of reference through the multi-blade transformation of all the rotating degrees of freedom. Results are presented in reference to a commercial multi-MW, pitch-regulated, variable-speed wind turbine. They indicate that the soft yaw concept offers more significant margins of improvement compared with the flap-lag coincidence, while aerodynamic optimization could be a basis for improvement. Copyright © 2007 John Wiley & Sons, Ltd. |
en |
heal.publisher |
JOHN WILEY & SONS LTD |
en |
heal.journalName |
Wind Energy |
en |
dc.identifier.doi |
10.1002/we.241 |
en |
dc.identifier.isi |
ISI:000255144400003 |
en |
dc.identifier.volume |
11 |
en |
dc.identifier.issue |
2 |
en |
dc.identifier.spage |
171 |
en |
dc.identifier.epage |
192 |
en |