HEAL DSpace

Balance laws and energy release rates for cracks in dipolar gradient elasticity

Αποθετήριο DSpace/Manakin

Εμφάνιση απλής εγγραφής

dc.contributor.author Grentzelou, CG en
dc.contributor.author Georgiadis, HG en
dc.date.accessioned 2014-03-01T01:28:00Z
dc.date.available 2014-03-01T01:28:00Z
dc.date.issued 2008 en
dc.identifier.issn 0020-7683 en
dc.identifier.uri https://dspace.lib.ntua.gr/xmlui/handle/123456789/18659
dc.subject Balance laws en
dc.subject Conservation laws en
dc.subject Dipolar stresses en
dc.subject Energy release rates en
dc.subject Generalized continuum theories en
dc.subject Gradient elasticity en
dc.subject Microstructure en
dc.subject Path-independent integrals en
dc.subject.classification Mechanics en
dc.subject.other Crack propagation en
dc.subject.other Elasticity en
dc.subject.other Gradient methods en
dc.subject.other Microstructure en
dc.subject.other Strain energy en
dc.subject.other Stresses en
dc.subject.other Balance laws en
dc.subject.other Conservation laws en
dc.subject.other Dipolar stresses en
dc.subject.other Generalized continuum theories en
dc.subject.other Gradient elasticity en
dc.subject.other Path-independent integrals en
dc.subject.other Energy release rate en
dc.title Balance laws and energy release rates for cracks in dipolar gradient elasticity en
heal.type journalArticle en
heal.identifier.primary 10.1016/j.ijsolstr.2007.08.007 en
heal.identifier.secondary http://dx.doi.org/10.1016/j.ijsolstr.2007.08.007 en
heal.language English en
heal.publicationDate 2008 en
heal.abstract It is the purpose of this work to derive the balance laws (in the Gunther-Knowles-Sternberg sense) pertaining to dipolar gradient elasticity. The theory of dipolar gradient (or grade 2) elasticity derives from considerations of microstructure in elastic continua [Mindlin, R.D., 1964. Microstructure in linear elasticity. Arch. Rational Mech. Anal. 16, 51-78] and is appropriate to model materials with periodic structure. According to this theory, the strain-energy density assumes the form of a positive-definite function of the strain (as in classical elasticity) and the gradient of both strain and rotation (additional terms). The balance laws are derived here through a more straightforward procedure than the one usually employed in classical elasticity (i.e. Noether's theorem). Indeed, the pertinent balance laws are obtained through the action of the standard operators of vector calculus (grad, curl and div) on appropriate forms of the Hamiltonian of the system under consideration. These laws are directly related to the energy release rates in the processes of crack translation, rotation and self-similar expansion. Under certain conditions, they are identified with conservation laws and path-independent integrals are obtained. (c) 2007 Elsevier Ltd. All rights reserved. en
heal.publisher PERGAMON-ELSEVIER SCIENCE LTD en
heal.journalName International Journal of Solids and Structures en
dc.identifier.doi 10.1016/j.ijsolstr.2007.08.007 en
dc.identifier.isi ISI:000251775000013 en
dc.identifier.volume 45 en
dc.identifier.issue 2 en
dc.identifier.spage 551 en
dc.identifier.epage 567 en


Αρχεία σε αυτό το τεκμήριο

Αρχεία Μέγεθος Μορφότυπο Προβολή

Δεν υπάρχουν αρχεία που σχετίζονται με αυτό το τεκμήριο.

Αυτό το τεκμήριο εμφανίζεται στην ακόλουθη συλλογή(ές)

Εμφάνιση απλής εγγραφής