dc.contributor.author |
Argyros, SA |
en |
dc.contributor.author |
Raikoftsalis, T |
en |
dc.date.accessioned |
2014-03-01T01:28:00Z |
|
dc.date.available |
2014-03-01T01:28:00Z |
|
dc.date.issued |
2008 |
en |
dc.identifier.issn |
0002-9939 |
en |
dc.identifier.uri |
https://dspace.lib.ntua.gr/xmlui/handle/123456789/18661 |
|
dc.subject |
prime banach space |
en |
dc.subject |
primary banach space |
en |
dc.subject |
Schauder decomposition |
en |
dc.subject |
hereditarily indecomposable banach space |
en |
dc.subject |
strictly singular operators |
en |
dc.subject |
complemented subspaces |
en |
dc.subject.classification |
Mathematics, Applied |
en |
dc.subject.classification |
Mathematics |
en |
dc.title |
Banach spaces with a unique nontrivial decomposition |
en |
heal.type |
journalArticle |
en |
heal.identifier.primary |
10.1090/S0002-9939-08-09368-4 |
en |
heal.identifier.secondary |
http://dx.doi.org/10.1090/S0002-9939-08-09368-4 |
en |
heal.language |
English |
en |
heal.publicationDate |
2008 |
en |
heal.abstract |
Motivated by a problem of P. Koszmider we introduce the class of quasi-prime Banach spaces. This class lies between the classes of prime and primary Banach spaces. It is shown that for every 1 <p < ∞ there exists a strictly quasi-prime separable reflexive Banach space ℓp such that ℓp is a complemented subspace of ℓp. A similar result also holds for the case of ℓ1 and C0. More generally, for every separable decomposable prime Banach space Y not containing ℓ1 there exists a strictly quasi-prime Y containing Y as a complemented subspace. We also investigate the operators acting on these spaces as well as the complemented subspaces of their finite powers. © 2008 American Mathematical Society. |
en |
heal.publisher |
AMER MATHEMATICAL SOC |
en |
heal.journalName |
Proceedings of the American Mathematical Society |
en |
dc.identifier.doi |
10.1090/S0002-9939-08-09368-4 |
en |
dc.identifier.isi |
ISI:000256948700028 |
en |
dc.identifier.volume |
136 |
en |
dc.identifier.issue |
10 |
en |
dc.identifier.spage |
3611 |
en |
dc.identifier.epage |
3620 |
en |