dc.contributor.author |
Kalvouridis, TJ |
en |
dc.contributor.author |
Hadjifotinou, KG |
en |
dc.date.accessioned |
2014-03-01T01:28:01Z |
|
dc.date.available |
2014-03-01T01:28:01Z |
|
dc.date.issued |
2008 |
en |
dc.identifier.issn |
0218-1274 |
en |
dc.identifier.uri |
https://dspace.lib.ntua.gr/xmlui/handle/123456789/18667 |
|
dc.subject |
Bifurcation of periodic orbits |
en |
dc.subject |
Four-body problem |
en |
dc.subject |
Numerical computation of periodic orbits |
en |
dc.subject |
Radiation pressure |
en |
dc.subject.classification |
Mathematics, Interdisciplinary Applications |
en |
dc.subject.classification |
Multidisciplinary Sciences |
en |
dc.subject.other |
Bifurcation (mathematics) |
en |
dc.subject.other |
Numerical methods |
en |
dc.subject.other |
Parameter estimation |
en |
dc.subject.other |
Problem solving |
en |
dc.subject.other |
Three dimensional |
en |
dc.subject.other |
Bifurcation of periodic orbits |
en |
dc.subject.other |
Four-body problem |
en |
dc.subject.other |
Numerical computations |
en |
dc.subject.other |
Radiation pressure |
en |
dc.subject.other |
Time varying systems |
en |
dc.title |
Bifurcations from planar to three-dimensional periodic orbits in the photo-gravitational restricted four-body problem |
en |
heal.type |
journalArticle |
en |
heal.identifier.primary |
10.1142/S0218127408020392 |
en |
heal.identifier.secondary |
http://dx.doi.org/10.1142/S0218127408020392 |
en |
heal.language |
English |
en |
heal.publicationDate |
2008 |
en |
heal.abstract |
We study the bifurcations of three-dimensional periodic motions from two-dimensional orbits of small particles in the neighborhood of a system that consists of three major bodies being always in syzygy. We assume that two of them have equal masses and are located at equal distances from the third body which has a different mass. All or some of the primaries are radiation sources and therefore apart from gravitational forces, we also consider forces that result from radiation. We apply the method of vertical critical stability in order to find the families of three-dimensional periodic orbits that bifurcate from families of planar periodic motions. Consequently, we study the parametric variations of the bifurcation points. © 2008 World Scientific Publishing Company. |
en |
heal.publisher |
WORLD SCIENTIFIC PUBL CO PTE LTD |
en |
heal.journalName |
International Journal of Bifurcation and Chaos |
en |
dc.identifier.doi |
10.1142/S0218127408020392 |
en |
dc.identifier.isi |
ISI:000257292100010 |
en |
dc.identifier.volume |
18 |
en |
dc.identifier.issue |
2 |
en |
dc.identifier.spage |
465 |
en |
dc.identifier.epage |
479 |
en |