HEAL DSpace

Bifurcations from planar to three-dimensional periodic orbits in the photo-gravitational restricted four-body problem

Αποθετήριο DSpace/Manakin

Εμφάνιση απλής εγγραφής

dc.contributor.author Kalvouridis, TJ en
dc.contributor.author Hadjifotinou, KG en
dc.date.accessioned 2014-03-01T01:28:01Z
dc.date.available 2014-03-01T01:28:01Z
dc.date.issued 2008 en
dc.identifier.issn 0218-1274 en
dc.identifier.uri https://dspace.lib.ntua.gr/xmlui/handle/123456789/18667
dc.subject Bifurcation of periodic orbits en
dc.subject Four-body problem en
dc.subject Numerical computation of periodic orbits en
dc.subject Radiation pressure en
dc.subject.classification Mathematics, Interdisciplinary Applications en
dc.subject.classification Multidisciplinary Sciences en
dc.subject.other Bifurcation (mathematics) en
dc.subject.other Numerical methods en
dc.subject.other Parameter estimation en
dc.subject.other Problem solving en
dc.subject.other Three dimensional en
dc.subject.other Bifurcation of periodic orbits en
dc.subject.other Four-body problem en
dc.subject.other Numerical computations en
dc.subject.other Radiation pressure en
dc.subject.other Time varying systems en
dc.title Bifurcations from planar to three-dimensional periodic orbits in the photo-gravitational restricted four-body problem en
heal.type journalArticle en
heal.identifier.primary 10.1142/S0218127408020392 en
heal.identifier.secondary http://dx.doi.org/10.1142/S0218127408020392 en
heal.language English en
heal.publicationDate 2008 en
heal.abstract We study the bifurcations of three-dimensional periodic motions from two-dimensional orbits of small particles in the neighborhood of a system that consists of three major bodies being always in syzygy. We assume that two of them have equal masses and are located at equal distances from the third body which has a different mass. All or some of the primaries are radiation sources and therefore apart from gravitational forces, we also consider forces that result from radiation. We apply the method of vertical critical stability in order to find the families of three-dimensional periodic orbits that bifurcate from families of planar periodic motions. Consequently, we study the parametric variations of the bifurcation points. © 2008 World Scientific Publishing Company. en
heal.publisher WORLD SCIENTIFIC PUBL CO PTE LTD en
heal.journalName International Journal of Bifurcation and Chaos en
dc.identifier.doi 10.1142/S0218127408020392 en
dc.identifier.isi ISI:000257292100010 en
dc.identifier.volume 18 en
dc.identifier.issue 2 en
dc.identifier.spage 465 en
dc.identifier.epage 479 en


Αρχεία σε αυτό το τεκμήριο

Αρχεία Μέγεθος Μορφότυπο Προβολή

Δεν υπάρχουν αρχεία που σχετίζονται με αυτό το τεκμήριο.

Αυτό το τεκμήριο εμφανίζεται στην ακόλουθη συλλογή(ές)

Εμφάνιση απλής εγγραφής