HEAL DSpace

CFD modelling of a "stabilized cool flame" reactor with reduced mechanisms and a direct integration approach

Αποθετήριο DSpace/Manakin

Εμφάνιση απλής εγγραφής

dc.contributor.author Katsourinis, DI en
dc.contributor.author Founti, MA en
dc.date.accessioned 2014-03-01T01:28:02Z
dc.date.available 2014-03-01T01:28:02Z
dc.date.issued 2008 en
dc.identifier.issn 0009-2509 en
dc.identifier.uri https://dspace.lib.ntua.gr/xmlui/handle/123456789/18673
dc.subject cool flames en
dc.subject droplet evaporation en
dc.subject multiphase flows en
dc.subject reduced chemical kinetic models en
dc.subject.classification Engineering, Chemical en
dc.subject.other LOW-TEMPERATURE OXIDATION en
dc.subject.other HYDROCARBON FUELS en
dc.subject.other SPRAY EVAPORATION en
dc.subject.other KINETIC-MODELS en
dc.subject.other COMBUSTION en
dc.subject.other AUTOIGNITION en
dc.subject.other FLOW en
dc.subject.other OPTIMIZATION en
dc.subject.other CHEMISTRY en
dc.subject.other PROPANE en
dc.title CFD modelling of a "stabilized cool flame" reactor with reduced mechanisms and a direct integration approach en
heal.type journalArticle en
heal.identifier.primary 10.1016/j.ces.2007.09.016 en
heal.identifier.secondary http://dx.doi.org/10.1016/j.ces.2007.09.016 en
heal.language English en
heal.publicationDate 2008 en
heal.abstract Controlled liquid fuel droplet evaporation under "stabilized cool flame" (SCF) conditions can lead to a homogeneous, heated air-fuel vapor mixture that can be subsequently either burnt or utilized in fuel reforming of fuel cell applications. The work focuses on the numerical modelling of diesel spray evaporation in an "SCF" reactor, operating under atmospheric pressure conditions. An "in-house" developed CFD code is used to predict flow characteristics. The complex oxidative phenomena encountered under SCF conditions are accounted for by implementing two reduced chemical kinetic schemes consisting of five (S5) and seven (S7) active species. Species conservation differential equations as well as reaction and heat release rates provided by the S5 and S7 schemes are solved in each computational cell via a direct integration approach. Comparison with experiments indicates that the implemented computational approach can successfully capture the major characteristics of the reactor's thermal field, especially when increasing air inlet temperatures. (C) 2007 Elsevier Ltd. All rights reserved. en
heal.publisher PERGAMON-ELSEVIER SCIENCE LTD en
heal.journalName CHEMICAL ENGINEERING SCIENCE en
dc.identifier.doi 10.1016/j.ces.2007.09.016 en
dc.identifier.isi ISI:000252694500010 en
dc.identifier.volume 63 en
dc.identifier.issue 2 en
dc.identifier.spage 424 en
dc.identifier.epage 433 en


Αρχεία σε αυτό το τεκμήριο

Αρχεία Μέγεθος Μορφότυπο Προβολή

Δεν υπάρχουν αρχεία που σχετίζονται με αυτό το τεκμήριο.

Αυτό το τεκμήριο εμφανίζεται στην ακόλουθη συλλογή(ές)

Εμφάνιση απλής εγγραφής