dc.contributor.author |
Katsourinis, DI |
en |
dc.contributor.author |
Founti, MA |
en |
dc.date.accessioned |
2014-03-01T01:28:02Z |
|
dc.date.available |
2014-03-01T01:28:02Z |
|
dc.date.issued |
2008 |
en |
dc.identifier.issn |
0009-2509 |
en |
dc.identifier.uri |
https://dspace.lib.ntua.gr/xmlui/handle/123456789/18673 |
|
dc.subject |
cool flames |
en |
dc.subject |
droplet evaporation |
en |
dc.subject |
multiphase flows |
en |
dc.subject |
reduced chemical kinetic models |
en |
dc.subject.classification |
Engineering, Chemical |
en |
dc.subject.other |
LOW-TEMPERATURE OXIDATION |
en |
dc.subject.other |
HYDROCARBON FUELS |
en |
dc.subject.other |
SPRAY EVAPORATION |
en |
dc.subject.other |
KINETIC-MODELS |
en |
dc.subject.other |
COMBUSTION |
en |
dc.subject.other |
AUTOIGNITION |
en |
dc.subject.other |
FLOW |
en |
dc.subject.other |
OPTIMIZATION |
en |
dc.subject.other |
CHEMISTRY |
en |
dc.subject.other |
PROPANE |
en |
dc.title |
CFD modelling of a "stabilized cool flame" reactor with reduced mechanisms and a direct integration approach |
en |
heal.type |
journalArticle |
en |
heal.identifier.primary |
10.1016/j.ces.2007.09.016 |
en |
heal.identifier.secondary |
http://dx.doi.org/10.1016/j.ces.2007.09.016 |
en |
heal.language |
English |
en |
heal.publicationDate |
2008 |
en |
heal.abstract |
Controlled liquid fuel droplet evaporation under "stabilized cool flame" (SCF) conditions can lead to a homogeneous, heated air-fuel vapor mixture that can be subsequently either burnt or utilized in fuel reforming of fuel cell applications. The work focuses on the numerical modelling of diesel spray evaporation in an "SCF" reactor, operating under atmospheric pressure conditions. An "in-house" developed CFD code is used to predict flow characteristics. The complex oxidative phenomena encountered under SCF conditions are accounted for by implementing two reduced chemical kinetic schemes consisting of five (S5) and seven (S7) active species. Species conservation differential equations as well as reaction and heat release rates provided by the S5 and S7 schemes are solved in each computational cell via a direct integration approach. Comparison with experiments indicates that the implemented computational approach can successfully capture the major characteristics of the reactor's thermal field, especially when increasing air inlet temperatures. (C) 2007 Elsevier Ltd. All rights reserved. |
en |
heal.publisher |
PERGAMON-ELSEVIER SCIENCE LTD |
en |
heal.journalName |
CHEMICAL ENGINEERING SCIENCE |
en |
dc.identifier.doi |
10.1016/j.ces.2007.09.016 |
en |
dc.identifier.isi |
ISI:000252694500010 |
en |
dc.identifier.volume |
63 |
en |
dc.identifier.issue |
2 |
en |
dc.identifier.spage |
424 |
en |
dc.identifier.epage |
433 |
en |