dc.contributor.author |
Papadopoulos, PG |
en |
dc.contributor.author |
Stavrakakis, NM |
en |
dc.date.accessioned |
2014-03-01T01:28:03Z |
|
dc.date.available |
2014-03-01T01:28:03Z |
|
dc.date.issued |
2008 |
en |
dc.identifier.issn |
0003-6811 |
en |
dc.identifier.uri |
https://dspace.lib.ntua.gr/xmlui/handle/123456789/18685 |
|
dc.subject |
quasilinear hyperbolic equations |
en |
dc.subject |
Kirchhoff strings |
en |
dc.subject |
global attractor |
en |
dc.subject |
unbounded domains |
en |
dc.subject |
generalised sobolev spaces |
en |
dc.subject |
weighted L-p spaces |
en |
dc.subject.classification |
Mathematics, Applied |
en |
dc.subject.other |
NONLINEAR HYPERBOLIC-EQUATIONS |
en |
dc.subject.other |
WAVE-EQUATIONS |
en |
dc.subject.other |
GLOBAL EXISTENCE |
en |
dc.subject.other |
ATTRACTORS |
en |
dc.title |
Compact invariant sets for some quasilinear nonlocal Kirchhoff strings on R-N |
en |
heal.type |
journalArticle |
en |
heal.identifier.primary |
10.1080/00036810601127418 |
en |
heal.identifier.secondary |
http://dx.doi.org/10.1080/00036810601127418 |
en |
heal.language |
English |
en |
heal.publicationDate |
2008 |
en |
heal.abstract |
We consider the quasilinear nonlocal dissipative Kirchhoff String problem u(u)-phi(x) vertical bar vertical bar x Delta u + delta u(t) + f(u) = 0, x is an element of R-N, t >= 0, with the initial conditions u(x, 0) = u(0)(x) and u(t)(x, 0) = u(1)(x), in the case where N >= 3, delta >= 0, f(u) = |u|(a)u for example, and (phi(x))(-1) is an element of L-N/2(R-N) boolean AND L-infinity(R-N) is a positive function. The purpose of our work is to study the long-time behaviour of the solution of this equation. The compactness of the embeddings D(A) subset of D-1,D-2 (R-N) subset of L-g(2) (R-N) is widely applied. |
en |
heal.publisher |
TAYLOR & FRANCIS LTD |
en |
heal.journalName |
APPLICABLE ANALYSIS |
en |
dc.identifier.doi |
10.1080/00036810601127418 |
en |
dc.identifier.isi |
ISI:000253642600001 |
en |
dc.identifier.volume |
87 |
en |
dc.identifier.issue |
2 |
en |
dc.identifier.spage |
133 |
en |
dc.identifier.epage |
148 |
en |