dc.contributor.author |
Mamais, D |
en |
dc.contributor.author |
Noutsopoulos, C |
en |
dc.contributor.author |
Stasinakis, AS |
en |
dc.contributor.author |
Kouris, N |
en |
dc.contributor.author |
Andreadakis, AD |
en |
dc.date.accessioned |
2014-03-01T01:28:03Z |
|
dc.date.available |
2014-03-01T01:28:03Z |
|
dc.date.issued |
2008 |
en |
dc.identifier.issn |
1061-4303 |
en |
dc.identifier.uri |
https://dspace.lib.ntua.gr/xmlui/handle/123456789/18687 |
|
dc.subject |
Activated sludge |
en |
dc.subject |
Bioluminescence |
en |
dc.subject |
Nitrification |
en |
dc.subject |
Toxicity |
en |
dc.subject |
Wastewater |
en |
dc.subject.classification |
Engineering, Environmental |
en |
dc.subject.classification |
Environmental Sciences |
en |
dc.subject.classification |
Limnology |
en |
dc.subject.classification |
Water Resources |
en |
dc.subject.other |
Activated sludge process |
en |
dc.subject.other |
Assays |
en |
dc.subject.other |
Bacteria |
en |
dc.subject.other |
Bioactivity |
en |
dc.subject.other |
Biochemical oxygen demand |
en |
dc.subject.other |
Bioluminescence |
en |
dc.subject.other |
Biomass |
en |
dc.subject.other |
Chemical oxygen demand |
en |
dc.subject.other |
Correlation methods |
en |
dc.subject.other |
Denitrification |
en |
dc.subject.other |
Heavy metals |
en |
dc.subject.other |
Industrial water treatment |
en |
dc.subject.other |
Light emission |
en |
dc.subject.other |
Luminescence |
en |
dc.subject.other |
Metal recovery |
en |
dc.subject.other |
Metals |
en |
dc.subject.other |
Nitrification |
en |
dc.subject.other |
Organic compounds |
en |
dc.subject.other |
Oxidation |
en |
dc.subject.other |
Phenols |
en |
dc.subject.other |
Phosphorescence |
en |
dc.subject.other |
Renewable energy resources |
en |
dc.subject.other |
Synthetic metals |
en |
dc.subject.other |
Toxicity |
en |
dc.subject.other |
Wastewater |
en |
dc.subject.other |
Water recycling |
en |
dc.subject.other |
Water treatment |
en |
dc.subject.other |
(e ,3e) process |
en |
dc.subject.other |
4-n-Nonylphenol |
en |
dc.subject.other |
Activated sludges |
en |
dc.subject.other |
Autotrophic bacteria |
en |
dc.subject.other |
Correlation coefficient (CC) |
en |
dc.subject.other |
Heavy metals content |
en |
dc.subject.other |
Heavy metals removal |
en |
dc.subject.other |
Industrial waste waters |
en |
dc.subject.other |
Municipal activated sludge |
en |
dc.subject.other |
Municipal wastewaters |
en |
dc.subject.other |
nitrification inhibition |
en |
dc.subject.other |
Secondary treatment |
en |
dc.subject.other |
Synthetic organic compounds |
en |
dc.subject.other |
Toxic effects |
en |
dc.subject.other |
Toxicity assessment |
en |
dc.subject.other |
toxicity testing |
en |
dc.subject.other |
Triclosan (TCS) |
en |
dc.subject.other |
vibrio fischeri |
en |
dc.subject.other |
Wastewater toxicity |
en |
dc.subject.other |
Wastewater treatment |
en |
dc.subject.other |
4 nonylphenol |
en |
dc.subject.other |
ammonia |
en |
dc.subject.other |
cadmium |
en |
dc.subject.other |
chromium |
en |
dc.subject.other |
copper |
en |
dc.subject.other |
heavy metal |
en |
dc.subject.other |
lead |
en |
dc.subject.other |
nickel |
en |
dc.subject.other |
triclosan |
en |
dc.subject.other |
zinc |
en |
dc.subject.other |
activated sludge |
en |
dc.subject.other |
assessment method |
en |
dc.subject.other |
autotrophy |
en |
dc.subject.other |
bioluminescence |
en |
dc.subject.other |
comparative study |
en |
dc.subject.other |
nitrification |
en |
dc.subject.other |
toxicity |
en |
dc.subject.other |
toxicity test |
en |
dc.subject.other |
water treatment |
en |
dc.subject.other |
activated sludge |
en |
dc.subject.other |
ammonia formation |
en |
dc.subject.other |
ammonia uptake rate |
en |
dc.subject.other |
article |
en |
dc.subject.other |
bioluminescence |
en |
dc.subject.other |
biomass |
en |
dc.subject.other |
correlation coefficient |
en |
dc.subject.other |
diagnostic accuracy |
en |
dc.subject.other |
ecotoxicity |
en |
dc.subject.other |
heavy metal removal |
en |
dc.subject.other |
intermethod comparison |
en |
dc.subject.other |
municipal solid waste |
en |
dc.subject.other |
nitrification |
en |
dc.subject.other |
nitrification inhibition assay |
en |
dc.subject.other |
nonhuman |
en |
dc.subject.other |
priority journal |
en |
dc.subject.other |
toxicity testing |
en |
dc.subject.other |
Vibrio fischeri |
en |
dc.subject.other |
waste water management |
en |
dc.subject.other |
Biomass |
en |
dc.subject.other |
Luminescence |
en |
dc.subject.other |
Nitrites |
en |
dc.subject.other |
Phenols |
en |
dc.subject.other |
Sewage |
en |
dc.subject.other |
Triclosan |
en |
dc.subject.other |
Vibrio fischeri |
en |
dc.subject.other |
Vibrio fischeri |
en |
dc.title |
Comparison of bioluminescence and nitrification inhibition methods for assessing toxicity to municipal activated sludge |
en |
heal.type |
journalArticle |
en |
heal.identifier.primary |
10.2175/106143008X268506 |
en |
heal.identifier.secondary |
http://dx.doi.org/10.2175/106143008X268506 |
en |
heal.language |
English |
en |
heal.publicationDate |
2008 |
en |
heal.abstract |
The aim of this study was to compare two alternative toxicity assessment methods to determine wastewater toxicity and predict treatment plant process upsets. The toxicity of two synthetic organic compounds (triclosan and 4-n-nonylphenol), which are commonly detected in municipal wastewater, and municipal and industrial wastewaters with different heavy metals content were evaluated by the nitrification inhibition assay and bioluminescence toxicity test. Comparison between both assays confirmed that Vibrio fischeri is generally more sensitive than autotrophic bacteria, and, if not calibrated, the bioluminescence method tends to overestimate toxic effects on activated sludge biomass. The nitrification inhibition assay appears to predict plant process upsets more accurately. Both methods showed a significant toxicity decrease through treatment that could be partially attributed to the significant heavy metals removal obtained by primary and secondary treatment. A good correlation for the two assays was obtained, as indicated by a high correlation coefficient (r(2) = 0.80). Water Environ. Res., 80, 484 (2008). |
en |
heal.publisher |
WATER ENVIRONMENT FEDERATION |
en |
heal.journalName |
Water Environment Research |
en |
dc.identifier.doi |
10.2175/106143008X268506 |
en |
dc.identifier.isi |
ISI:000261127500002 |
en |
dc.identifier.volume |
80 |
en |
dc.identifier.issue |
6 |
en |
dc.identifier.spage |
484 |
en |
dc.identifier.epage |
489 |
en |