HEAL DSpace

Computation of the Hessian matrix in aerodynamic inverse design using continuous adjoint formulations

Αποθετήριο DSpace/Manakin

Εμφάνιση απλής εγγραφής

dc.contributor.author Papadimitriou, DI en
dc.contributor.author Giannakoglou, KC en
dc.date.accessioned 2014-03-01T01:28:04Z
dc.date.available 2014-03-01T01:28:04Z
dc.date.issued 2008 en
dc.identifier.issn 0045-7930 en
dc.identifier.uri https://dspace.lib.ntua.gr/xmlui/handle/123456789/18691
dc.subject Degree of Freedom en
dc.subject Newton Method en
dc.subject Objective Function en
dc.subject Optimization Problem en
dc.subject Pressure Distribution en
dc.subject Problem Solving en
dc.subject Direct Differentiation Method en
dc.subject Second Order en
dc.subject.classification Computer Science, Interdisciplinary Applications en
dc.subject.classification Mechanics en
dc.subject.other SENSITIVITY-ANALYSIS en
dc.subject.other SHAPE OPTIMIZATION en
dc.subject.other DERIVATIVES en
dc.title Computation of the Hessian matrix in aerodynamic inverse design using continuous adjoint formulations en
heal.type journalArticle en
heal.identifier.primary 10.1016/j.compfluid.2007.11.001 en
heal.identifier.secondary http://dx.doi.org/10.1016/j.compfluid.2007.11.001 en
heal.language English en
heal.publicationDate 2008 en
heal.abstract Continuous adjoint formulations for the computation of (first and) second order derivatives of the objective function governing inverse design problems in 2D inviscid flows are presented. These are prerequisites for the use of the very efficient exact Newton method. Four new formulations based on all possible combinations of the direct differentiation method and the continuous adjoint approach to compute the sensitivity derivatives of objective functions, constrained by the flow equations, are presented. They are compared in terms of the expected CPU cost to compute the Hessian of the objective function used in single-objective optimization problems with N degrees of freedom. The less costly among them was selected for further study and tested in inverse design problems solved by means of the Newton method. The selected approach, which will be referred to as the direct-adjoint one, since it performs direct differentiation for the gradient and, then, uses the adjoint approach to compute the Hessian, requires as many as N + 2 equivalent flow solutions for each Newton step. The major part of the CPU cost (N equivalent flow solutions) is for the computation of the gradient but, fortunately, this task is directly amenable to parallelization. The method is used to reconstruct ducts or cascade airfoils for a known pressure distribution along their solid boundaries, at inviscid flow conditions. The examined cases aim at demonstrating the accuracy of the proposed method in computing the exact Hessian matrix as well as the efficiency of the exact Newton method as an optimization tool in aerodynamic design. (C) 2007 Elsevier Ltd. All rights reserved. en
heal.publisher PERGAMON-ELSEVIER SCIENCE LTD en
heal.journalName COMPUTERS & FLUIDS en
dc.identifier.doi 10.1016/j.compfluid.2007.11.001 en
dc.identifier.isi ISI:000258022200008 en
dc.identifier.volume 37 en
dc.identifier.issue 8 en
dc.identifier.spage 1029 en
dc.identifier.epage 1039 en


Αρχεία σε αυτό το τεκμήριο

Αρχεία Μέγεθος Μορφότυπο Προβολή

Δεν υπάρχουν αρχεία που σχετίζονται με αυτό το τεκμήριο.

Αυτό το τεκμήριο εμφανίζεται στην ακόλουθη συλλογή(ές)

Εμφάνιση απλής εγγραφής