HEAL DSpace

Computational analysis and learning for a biologically motivated model of boundary detection

Αποθετήριο DSpace/Manakin

Εμφάνιση απλής εγγραφής

dc.contributor.author Kokkinos, I en
dc.contributor.author Deriche, R en
dc.contributor.author Faugeras, O en
dc.contributor.author Maragos, P en
dc.date.accessioned 2014-03-01T01:28:04Z
dc.date.available 2014-03-01T01:28:04Z
dc.date.issued 2008 en
dc.identifier.issn 0925-2312 en
dc.identifier.uri https://dspace.lib.ntua.gr/xmlui/handle/123456789/18692
dc.subject Biological vision en
dc.subject Boltzmann machines en
dc.subject Boundary detection en
dc.subject Computer vision en
dc.subject Learning en
dc.subject Mean field theory en
dc.subject Neural networks en
dc.subject Perceptual grouping en
dc.subject Variational techniques en
dc.subject.classification Computer Science, Artificial Intelligence en
dc.subject.other Algorithms en
dc.subject.other Cost functions en
dc.subject.other Image segmentation en
dc.subject.other Mean field theory en
dc.subject.other Neural networks en
dc.subject.other Variational techniques en
dc.subject.other Biological vision en
dc.subject.other Boltzmann machines en
dc.subject.other Boundary detection en
dc.subject.other Perceptual grouping en
dc.subject.other Computer vision en
dc.subject.other algorithm en
dc.subject.other article en
dc.subject.other computer network en
dc.subject.other computer system en
dc.subject.other image display en
dc.subject.other image processing en
dc.subject.other intermethod comparison en
dc.subject.other machine learning en
dc.subject.other mathematical computing en
dc.subject.other mathematical model en
dc.subject.other priority journal en
dc.subject.other quality control en
dc.subject.other visual information en
dc.title Computational analysis and learning for a biologically motivated model of boundary detection en
heal.type journalArticle en
heal.identifier.primary 10.1016/j.neucom.2007.11.031 en
heal.identifier.secondary http://dx.doi.org/10.1016/j.neucom.2007.11.031 en
heal.language English en
heal.publicationDate 2008 en
heal.abstract In this work we address the problem of boundary detection by combining ideas and approaches from biological and computational vision. Initially, we propose a simple and efficient architecture that is inspired from models of biological vision. Subsequently, we interpret and learn the system using computer vision techniques: First, we present analogies between the system components and computer vision techniques and interpret the network as minimizing a cost functional, thereby establishing a link with variational techniques. Second, based on Mean Field Theory the equations describing the network behavior are interpreted statistically. Third, we build on this interpretation to develop an algorithm to learn the network weights from manually segmented natural images. Using a systematic evaluation on the Berkeley benchmark we show that when using the learned connection weights our network outperforms classical edge detection algorithms. (C) 2008 Elsevier B.V. All rights reserved. en
heal.publisher ELSEVIER SCIENCE BV en
heal.journalName Neurocomputing en
dc.identifier.doi 10.1016/j.neucom.2007.11.031 en
dc.identifier.isi ISI:000257413300004 en
dc.identifier.volume 71 en
dc.identifier.issue 10-12 en
dc.identifier.spage 1798 en
dc.identifier.epage 1812 en


Αρχεία σε αυτό το τεκμήριο

Αρχεία Μέγεθος Μορφότυπο Προβολή

Δεν υπάρχουν αρχεία που σχετίζονται με αυτό το τεκμήριο.

Αυτό το τεκμήριο εμφανίζεται στην ακόλουθη συλλογή(ές)

Εμφάνιση απλής εγγραφής