dc.contributor.author |
Kokkinos, I |
en |
dc.contributor.author |
Deriche, R |
en |
dc.contributor.author |
Faugeras, O |
en |
dc.contributor.author |
Maragos, P |
en |
dc.date.accessioned |
2014-03-01T01:28:04Z |
|
dc.date.available |
2014-03-01T01:28:04Z |
|
dc.date.issued |
2008 |
en |
dc.identifier.issn |
0925-2312 |
en |
dc.identifier.uri |
https://dspace.lib.ntua.gr/xmlui/handle/123456789/18692 |
|
dc.subject |
Biological vision |
en |
dc.subject |
Boltzmann machines |
en |
dc.subject |
Boundary detection |
en |
dc.subject |
Computer vision |
en |
dc.subject |
Learning |
en |
dc.subject |
Mean field theory |
en |
dc.subject |
Neural networks |
en |
dc.subject |
Perceptual grouping |
en |
dc.subject |
Variational techniques |
en |
dc.subject.classification |
Computer Science, Artificial Intelligence |
en |
dc.subject.other |
Algorithms |
en |
dc.subject.other |
Cost functions |
en |
dc.subject.other |
Image segmentation |
en |
dc.subject.other |
Mean field theory |
en |
dc.subject.other |
Neural networks |
en |
dc.subject.other |
Variational techniques |
en |
dc.subject.other |
Biological vision |
en |
dc.subject.other |
Boltzmann machines |
en |
dc.subject.other |
Boundary detection |
en |
dc.subject.other |
Perceptual grouping |
en |
dc.subject.other |
Computer vision |
en |
dc.subject.other |
algorithm |
en |
dc.subject.other |
article |
en |
dc.subject.other |
computer network |
en |
dc.subject.other |
computer system |
en |
dc.subject.other |
image display |
en |
dc.subject.other |
image processing |
en |
dc.subject.other |
intermethod comparison |
en |
dc.subject.other |
machine learning |
en |
dc.subject.other |
mathematical computing |
en |
dc.subject.other |
mathematical model |
en |
dc.subject.other |
priority journal |
en |
dc.subject.other |
quality control |
en |
dc.subject.other |
visual information |
en |
dc.title |
Computational analysis and learning for a biologically motivated model of boundary detection |
en |
heal.type |
journalArticle |
en |
heal.identifier.primary |
10.1016/j.neucom.2007.11.031 |
en |
heal.identifier.secondary |
http://dx.doi.org/10.1016/j.neucom.2007.11.031 |
en |
heal.language |
English |
en |
heal.publicationDate |
2008 |
en |
heal.abstract |
In this work we address the problem of boundary detection by combining ideas and approaches from biological and computational vision. Initially, we propose a simple and efficient architecture that is inspired from models of biological vision. Subsequently, we interpret and learn the system using computer vision techniques: First, we present analogies between the system components and computer vision techniques and interpret the network as minimizing a cost functional, thereby establishing a link with variational techniques. Second, based on Mean Field Theory the equations describing the network behavior are interpreted statistically. Third, we build on this interpretation to develop an algorithm to learn the network weights from manually segmented natural images. Using a systematic evaluation on the Berkeley benchmark we show that when using the learned connection weights our network outperforms classical edge detection algorithms. (C) 2008 Elsevier B.V. All rights reserved. |
en |
heal.publisher |
ELSEVIER SCIENCE BV |
en |
heal.journalName |
Neurocomputing |
en |
dc.identifier.doi |
10.1016/j.neucom.2007.11.031 |
en |
dc.identifier.isi |
ISI:000257413300004 |
en |
dc.identifier.volume |
71 |
en |
dc.identifier.issue |
10-12 |
en |
dc.identifier.spage |
1798 |
en |
dc.identifier.epage |
1812 |
en |