dc.contributor.author |
Katsikis, VN |
en |
dc.date.accessioned |
2014-03-01T01:28:04Z |
|
dc.date.available |
2014-03-01T01:28:04Z |
|
dc.date.issued |
2008 |
en |
dc.identifier.issn |
0096-3003 |
en |
dc.identifier.uri |
https://dspace.lib.ntua.gr/xmlui/handle/123456789/18693 |
|
dc.subject |
Computational methods |
en |
dc.subject |
Lattice-subspaces |
en |
dc.subject |
Matlab |
en |
dc.subject |
Portfolio insurance |
en |
dc.subject |
Positive basis |
en |
dc.subject.classification |
Mathematics, Applied |
en |
dc.subject.other |
Finite element method |
en |
dc.subject.other |
Function evaluation |
en |
dc.subject.other |
MATLAB |
en |
dc.subject.other |
Numerical methods |
en |
dc.subject.other |
Problem solving |
en |
dc.subject.other |
Algorithmic process |
en |
dc.subject.other |
Lattice-subspaces |
en |
dc.subject.other |
Portfolio insurance |
en |
dc.subject.other |
Computational methods |
en |
dc.title |
Computational methods in lattice-subspaces of C [a, b] with applications in portfolio insurance |
en |
heal.type |
journalArticle |
en |
heal.identifier.primary |
10.1016/j.amc.2007.11.002 |
en |
heal.identifier.secondary |
http://dx.doi.org/10.1016/j.amc.2007.11.002 |
en |
heal.language |
English |
en |
heal.publicationDate |
2008 |
en |
heal.abstract |
In this article, we develop a computational method for an algorithmic process first posed by Polyrakis in 1996 in order to check whether a finite collection of linearly independent positive functions in C[a, b] forms a lattice-subspace. Lattice-subspaces are closely related to a cost minimization problem in the theory of finance that ensures the minimum-cost insured portfolio and this connection is further investigated here. Finally, we propose a computational method in order to solve the minimization problem and to calculate the minimum-cost insured portfolio. All of the numerical work is performed using the Matlab high-level language. (C) 2007 Elsevier Inc. All rights reserved. |
en |
heal.publisher |
ELSEVIER SCIENCE INC |
en |
heal.journalName |
Applied Mathematics and Computation |
en |
dc.identifier.doi |
10.1016/j.amc.2007.11.002 |
en |
dc.identifier.isi |
ISI:000255728600020 |
en |
dc.identifier.volume |
200 |
en |
dc.identifier.issue |
1 |
en |
dc.identifier.spage |
204 |
en |
dc.identifier.epage |
219 |
en |