dc.contributor.author |
Dimarogonas, DV |
en |
dc.contributor.author |
Kyriakopoulos, KJ |
en |
dc.date.accessioned |
2014-03-01T01:28:04Z |
|
dc.date.available |
2014-03-01T01:28:04Z |
|
dc.date.issued |
2008 |
en |
dc.identifier.issn |
1552-3098 |
en |
dc.identifier.uri |
https://dspace.lib.ntua.gr/xmlui/handle/123456789/18696 |
|
dc.subject |
Distributed swarm coordination |
en |
dc.subject |
Dynamic graphs |
en |
dc.subject |
Graph connectivity |
en |
dc.subject |
Multiagent coordination |
en |
dc.subject.classification |
Robotics |
en |
dc.subject.other |
Agglomeration |
en |
dc.subject.other |
Graph theory |
en |
dc.subject.other |
Kinematics |
en |
dc.subject.other |
Aggregation algorithms |
en |
dc.subject.other |
Communication graphs |
en |
dc.subject.other |
Connectivity properties |
en |
dc.subject.other |
Control laws |
en |
dc.subject.other |
Distributed swarm coordination |
en |
dc.subject.other |
Dynamic graphs |
en |
dc.subject.other |
Edge additions |
en |
dc.subject.other |
Graph connectivity |
en |
dc.subject.other |
Kinematic robots |
en |
dc.subject.other |
Loop systems |
en |
dc.subject.other |
Multiagent coordination |
en |
dc.subject.other |
Non-holonomic |
en |
dc.subject.other |
Potential fields |
en |
dc.subject.other |
Repulsive potential fields |
en |
dc.subject.other |
Sensing radiuses |
en |
dc.subject.other |
Swarm sizes |
en |
dc.subject.other |
Agents |
en |
dc.title |
Connectedness preserving distributed swarm aggregation for multiple kinematic robots |
en |
heal.type |
journalArticle |
en |
heal.identifier.primary |
10.1109/TRO.2008.2002313 |
en |
heal.identifier.secondary |
http://dx.doi.org/10.1109/TRO.2008.2002313 |
en |
heal.language |
English |
en |
heal.publicationDate |
2008 |
en |
heal.abstract |
A distributed swarm aggregation algorithm is developed for a team of multiple kinematic agents. Specifically, each agent is assigned a control law, which is the sum of two elements: a repulsive potential field, which is responsible for the collision avoidance objective, and an attractive potential field, which forces the agents to converge to a configuration where they are close to each other. Furthermore, the attractive potential field forces the agents that are initially located within the sensing radius of an agent to remain within this area for all time. In this way, the connectivity properties of the initially formed communication graph are rendered invariant for the trajectories of the closed-loop system. It is shown that under the proposed control law, agents converge to a configuration where each agent is located at a bounded distance from each of its neighbors. The results are also extended to the case of nonholonomic kinematic unicycle-type agents and to the case of dynamic edge addition. In the latter case, we derive a smaller bound in the swarm size than in the static case. © 2008 IEEE. |
en |
heal.publisher |
IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC |
en |
heal.journalName |
IEEE Transactions on Robotics |
en |
dc.identifier.doi |
10.1109/TRO.2008.2002313 |
en |
dc.identifier.isi |
ISI:000260865400025 |
en |
dc.identifier.volume |
24 |
en |
dc.identifier.issue |
5 |
en |
dc.identifier.spage |
1213 |
en |
dc.identifier.epage |
1223 |
en |