HEAL DSpace

Dark formation detection using neural networks

Αποθετήριο DSpace/Manakin

Εμφάνιση απλής εγγραφής

dc.contributor.author Topouzelis, K en
dc.contributor.author Karathanassi, V en
dc.contributor.author Pavlakis, P en
dc.contributor.author Rokos, D en
dc.date.accessioned 2014-03-01T01:28:05Z
dc.date.available 2014-03-01T01:28:05Z
dc.date.issued 2008 en
dc.identifier.issn 0143-1161 en
dc.identifier.uri https://dspace.lib.ntua.gr/xmlui/handle/123456789/18708
dc.subject Neural Network en
dc.subject.classification Remote Sensing en
dc.subject.classification Imaging Science & Photographic Technology en
dc.subject.other Accidents en
dc.subject.other Artificial intelligence en
dc.subject.other Backscattering en
dc.subject.other Computer architecture en
dc.subject.other Deformation en
dc.subject.other Detectors en
dc.subject.other Feedforward neural networks en
dc.subject.other Hazardous materials spills en
dc.subject.other Image classification en
dc.subject.other Image enhancement en
dc.subject.other Imaging systems en
dc.subject.other Imaging techniques en
dc.subject.other Lightning en
dc.subject.other Marine pollution en
dc.subject.other Marine radar en
dc.subject.other Multilayer neural networks en
dc.subject.other Network architecture en
dc.subject.other Nonlinear optics en
dc.subject.other Oil spills en
dc.subject.other Pollution en
dc.subject.other Radar en
dc.subject.other Radial basis function networks en
dc.subject.other Synthetic aperture radar en
dc.subject.other Synthetic apertures en
dc.subject.other Target drones en
dc.subject.other Topology en
dc.subject.other Tracking radar en
dc.subject.other Vegetation en
dc.subject.other Artificial neural network (ANNs) en
dc.subject.other Feed forward (FF) en
dc.subject.other High resolution imagery en
dc.subject.other High resolution satellite images en
dc.subject.other High resolutions en
dc.subject.other Local weather conditions en
dc.subject.other Marine environments en
dc.subject.other Multi layer perceptron (MLP) en
dc.subject.other Multilayer perceptron (MLP) networks en
dc.subject.other Nonlinear behaviours en
dc.subject.other Oil spills en
dc.subject.other Pixel values en
dc.subject.other Radar backscatter en
dc.subject.other Radial-basis function (RBF) en
dc.subject.other SAR Images en
dc.subject.other Sea waves en
dc.subject.other Synthetic aperture radar (SAR) images en
dc.subject.other Neural networks en
dc.subject.other architecture en
dc.subject.other artificial neural network en
dc.subject.other detection method en
dc.subject.other image analysis en
dc.subject.other nonlinearity en
dc.subject.other pixel en
dc.subject.other remote sensing en
dc.subject.other satellite imagery en
dc.subject.other synthetic aperture radar en
dc.subject.other threshold en
dc.subject.other topology en
dc.title Dark formation detection using neural networks en
heal.type journalArticle en
heal.identifier.primary 10.1080/01431160801891770 en
heal.identifier.secondary http://dx.doi.org/10.1080/01431160801891770 en
heal.language English en
heal.publicationDate 2008 en
heal.abstract Synthetic Aperture Radar (SAR) images are extensively used for dark formation detection in marine environment, as they are not affected by local weather conditions and cloudiness. Dark formations can be caused by man-made actions (e.g. oil spills) or natural ocean phenomena (e.g. natural slicks and wind front areas). Radar backscatter values for oil spills are very similar to backscatter values for very calm sea areas and other ocean phenomena because they dampen the capillary and short gravity sea waves. Thus, traditionally, dark formation detection is the first stage of the oil-spill detection procedure and in most studies is performed manually or using a fixed size window in which a threshold value is adopted. In high-resolution imagery, dark formation detection may fail due to the nonlinear behaviour of the pixel values contained in the dark formation and in the area around it. In this paper, we examine the ability of two feed-forward neural network families, i.e. Multilayer Perceptron (MLP) and the Radial Basis Function (RBF) networks, to detect dark formations in high-resolution SAR images. The general objective of this paper is to test the potential of artificial neural networks for dark formation detection using SAR high-resolution satellite images. Both the type and the architecture of the network are subjects of research. The inputs into the networks are the original SAR images. Each network is called to classify an area of the image as dark area or sea. The group of MLP networks can be recognized as the most suitable group for dark formation detection, as it presents reliable stable results for all the examined accuracies. Nevertheless, in terms of single topology, there is no an MLP topology that performs significantly better than the others. en
heal.publisher TAYLOR & FRANCIS LTD en
heal.journalName International Journal of Remote Sensing en
dc.identifier.doi 10.1080/01431160801891770 en
dc.identifier.isi ISI:000257997000006 en
dc.identifier.volume 29 en
dc.identifier.issue 16 en
dc.identifier.spage 4705 en
dc.identifier.epage 4720 en


Αρχεία σε αυτό το τεκμήριο

Αρχεία Μέγεθος Μορφότυπο Προβολή

Δεν υπάρχουν αρχεία που σχετίζονται με αυτό το τεκμήριο.

Αυτό το τεκμήριο εμφανίζεται στην ακόλουθη συλλογή(ές)

Εμφάνιση απλής εγγραφής