dc.contributor.author |
Topouzelis, K |
en |
dc.contributor.author |
Karathanassi, V |
en |
dc.contributor.author |
Pavlakis, P |
en |
dc.contributor.author |
Rokos, D |
en |
dc.date.accessioned |
2014-03-01T01:28:05Z |
|
dc.date.available |
2014-03-01T01:28:05Z |
|
dc.date.issued |
2008 |
en |
dc.identifier.issn |
0143-1161 |
en |
dc.identifier.uri |
https://dspace.lib.ntua.gr/xmlui/handle/123456789/18708 |
|
dc.subject |
Neural Network |
en |
dc.subject.classification |
Remote Sensing |
en |
dc.subject.classification |
Imaging Science & Photographic Technology |
en |
dc.subject.other |
Accidents |
en |
dc.subject.other |
Artificial intelligence |
en |
dc.subject.other |
Backscattering |
en |
dc.subject.other |
Computer architecture |
en |
dc.subject.other |
Deformation |
en |
dc.subject.other |
Detectors |
en |
dc.subject.other |
Feedforward neural networks |
en |
dc.subject.other |
Hazardous materials spills |
en |
dc.subject.other |
Image classification |
en |
dc.subject.other |
Image enhancement |
en |
dc.subject.other |
Imaging systems |
en |
dc.subject.other |
Imaging techniques |
en |
dc.subject.other |
Lightning |
en |
dc.subject.other |
Marine pollution |
en |
dc.subject.other |
Marine radar |
en |
dc.subject.other |
Multilayer neural networks |
en |
dc.subject.other |
Network architecture |
en |
dc.subject.other |
Nonlinear optics |
en |
dc.subject.other |
Oil spills |
en |
dc.subject.other |
Pollution |
en |
dc.subject.other |
Radar |
en |
dc.subject.other |
Radial basis function networks |
en |
dc.subject.other |
Synthetic aperture radar |
en |
dc.subject.other |
Synthetic apertures |
en |
dc.subject.other |
Target drones |
en |
dc.subject.other |
Topology |
en |
dc.subject.other |
Tracking radar |
en |
dc.subject.other |
Vegetation |
en |
dc.subject.other |
Artificial neural network (ANNs) |
en |
dc.subject.other |
Feed forward (FF) |
en |
dc.subject.other |
High resolution imagery |
en |
dc.subject.other |
High resolution satellite images |
en |
dc.subject.other |
High resolutions |
en |
dc.subject.other |
Local weather conditions |
en |
dc.subject.other |
Marine environments |
en |
dc.subject.other |
Multi layer perceptron (MLP) |
en |
dc.subject.other |
Multilayer perceptron (MLP) networks |
en |
dc.subject.other |
Nonlinear behaviours |
en |
dc.subject.other |
Oil spills |
en |
dc.subject.other |
Pixel values |
en |
dc.subject.other |
Radar backscatter |
en |
dc.subject.other |
Radial-basis function (RBF) |
en |
dc.subject.other |
SAR Images |
en |
dc.subject.other |
Sea waves |
en |
dc.subject.other |
Synthetic aperture radar (SAR) images |
en |
dc.subject.other |
Neural networks |
en |
dc.subject.other |
architecture |
en |
dc.subject.other |
artificial neural network |
en |
dc.subject.other |
detection method |
en |
dc.subject.other |
image analysis |
en |
dc.subject.other |
nonlinearity |
en |
dc.subject.other |
pixel |
en |
dc.subject.other |
remote sensing |
en |
dc.subject.other |
satellite imagery |
en |
dc.subject.other |
synthetic aperture radar |
en |
dc.subject.other |
threshold |
en |
dc.subject.other |
topology |
en |
dc.title |
Dark formation detection using neural networks |
en |
heal.type |
journalArticle |
en |
heal.identifier.primary |
10.1080/01431160801891770 |
en |
heal.identifier.secondary |
http://dx.doi.org/10.1080/01431160801891770 |
en |
heal.language |
English |
en |
heal.publicationDate |
2008 |
en |
heal.abstract |
Synthetic Aperture Radar (SAR) images are extensively used for dark formation detection in marine environment, as they are not affected by local weather conditions and cloudiness. Dark formations can be caused by man-made actions (e.g. oil spills) or natural ocean phenomena (e.g. natural slicks and wind front areas). Radar backscatter values for oil spills are very similar to backscatter values for very calm sea areas and other ocean phenomena because they dampen the capillary and short gravity sea waves. Thus, traditionally, dark formation detection is the first stage of the oil-spill detection procedure and in most studies is performed manually or using a fixed size window in which a threshold value is adopted. In high-resolution imagery, dark formation detection may fail due to the nonlinear behaviour of the pixel values contained in the dark formation and in the area around it. In this paper, we examine the ability of two feed-forward neural network families, i.e. Multilayer Perceptron (MLP) and the Radial Basis Function (RBF) networks, to detect dark formations in high-resolution SAR images. The general objective of this paper is to test the potential of artificial neural networks for dark formation detection using SAR high-resolution satellite images. Both the type and the architecture of the network are subjects of research. The inputs into the networks are the original SAR images. Each network is called to classify an area of the image as dark area or sea. The group of MLP networks can be recognized as the most suitable group for dark formation detection, as it presents reliable stable results for all the examined accuracies. Nevertheless, in terms of single topology, there is no an MLP topology that performs significantly better than the others. |
en |
heal.publisher |
TAYLOR & FRANCIS LTD |
en |
heal.journalName |
International Journal of Remote Sensing |
en |
dc.identifier.doi |
10.1080/01431160801891770 |
en |
dc.identifier.isi |
ISI:000257997000006 |
en |
dc.identifier.volume |
29 |
en |
dc.identifier.issue |
16 |
en |
dc.identifier.spage |
4705 |
en |
dc.identifier.epage |
4720 |
en |