dc.contributor.author |
Angelopoulos, P |
en |
dc.contributor.author |
Koukouvinos, C |
en |
dc.date.accessioned |
2014-03-01T01:28:08Z |
|
dc.date.available |
2014-03-01T01:28:08Z |
|
dc.date.issued |
2008 |
en |
dc.identifier.issn |
0266-4763 |
en |
dc.identifier.uri |
https://dspace.lib.ntua.gr/xmlui/handle/123456789/18721 |
|
dc.subject |
Effect |
en |
dc.subject |
Factorial |
en |
dc.subject |
Outliers |
en |
dc.subject |
Unreplicated design |
en |
dc.subject.classification |
Statistics & Probability |
en |
dc.subject.other |
FACTORIAL-EXPERIMENTS |
en |
dc.subject.other |
QUICK |
en |
dc.title |
Detecting active effects in unreplicated designs |
en |
heal.type |
journalArticle |
en |
heal.identifier.primary |
10.1080/02664760701833008 |
en |
heal.identifier.secondary |
http://dx.doi.org/10.1080/02664760701833008 |
en |
heal.language |
English |
en |
heal.publicationDate |
2008 |
en |
heal.abstract |
Unreplicated factorial designs pose a difficult problem in analysis because there are no degrees of freedom left to estimate the error. Daniel [Technometrics 1 (1959), pp. 311-341] proposed an ingenious graphical method that does not require sigma to be estimated. Here we try to put Daniel's method into a formal framework and lift the subjectiveness that carries. A simulation study has been conducted that shows that the proposed method behaves better than Lenth's [Technometrics 31 (1989), pp. 469-473] popular method. |
en |
heal.publisher |
ROUTLEDGE JOURNALS, TAYLOR & FRANCIS LTD |
en |
heal.journalName |
Journal of Applied Statistics |
en |
dc.identifier.doi |
10.1080/02664760701833008 |
en |
dc.identifier.isi |
ISI:000256403200004 |
en |
dc.identifier.volume |
35 |
en |
dc.identifier.issue |
3 |
en |
dc.identifier.spage |
277 |
en |
dc.identifier.epage |
281 |
en |