dc.contributor.author |
Matsopoulos, GK |
en |
dc.contributor.author |
Asvestas, PA |
en |
dc.contributor.author |
Delibasis, KK |
en |
dc.contributor.author |
Mouravliansky, NA |
en |
dc.contributor.author |
Zeyen, TG |
en |
dc.date.accessioned |
2014-03-01T01:28:08Z |
|
dc.date.available |
2014-03-01T01:28:08Z |
|
dc.date.issued |
2008 |
en |
dc.identifier.issn |
0895-6111 |
en |
dc.identifier.uri |
https://dspace.lib.ntua.gr/xmlui/handle/123456789/18722 |
|
dc.subject |
Artificial neural networks |
en |
dc.subject |
Classification |
en |
dc.subject |
Glaucoma |
en |
dc.subject |
k-Nearest Neighbor classifier |
en |
dc.subject |
Registration |
en |
dc.subject |
Self organizing maps |
en |
dc.subject |
Sequential float forward search |
en |
dc.subject |
Wavelet coefficients |
en |
dc.subject.classification |
Radiology, Nuclear Medicine & Medical Imaging |
en |
dc.subject.other |
Image analysis |
en |
dc.subject.other |
Image classification |
en |
dc.subject.other |
Image segmentation |
en |
dc.subject.other |
Parameter estimation |
en |
dc.subject.other |
Patient treatment |
en |
dc.subject.other |
Risk analysis |
en |
dc.subject.other |
Self organizing maps |
en |
dc.subject.other |
Classification techniques |
en |
dc.subject.other |
Glaucomatous damage |
en |
dc.subject.other |
Optic nerve head |
en |
dc.subject.other |
Sequential float forward search |
en |
dc.subject.other |
Wavelet coefficients |
en |
dc.subject.other |
Medical imaging |
en |
dc.subject.other |
angiogenesis |
en |
dc.subject.other |
article |
en |
dc.subject.other |
artificial neural network |
en |
dc.subject.other |
camera |
en |
dc.subject.other |
correspondence analysis |
en |
dc.subject.other |
diagnostic imaging |
en |
dc.subject.other |
disease classification |
en |
dc.subject.other |
glaucoma |
en |
dc.subject.other |
human |
en |
dc.subject.other |
image processing |
en |
dc.subject.other |
intraocular hypertension |
en |
dc.subject.other |
major clinical study |
en |
dc.subject.other |
optic disk |
en |
dc.subject.other |
priority journal |
en |
dc.subject.other |
quantitative analysis |
en |
dc.subject.other |
retina blood vessel |
en |
dc.subject.other |
retina image |
en |
dc.subject.other |
Glaucoma, Open-Angle |
en |
dc.subject.other |
Humans |
en |
dc.subject.other |
Image Interpretation, Computer-Assisted |
en |
dc.subject.other |
Intraocular Pressure |
en |
dc.subject.other |
Neural Networks (Computer) |
en |
dc.subject.other |
Ocular Hypertension |
en |
dc.subject.other |
Optic Disk |
en |
dc.subject.other |
Optic Nerve Diseases |
en |
dc.subject.other |
Photography |
en |
dc.subject.other |
Retinal Vessels |
en |
dc.subject.other |
Sensitivity and Specificity |
en |
dc.subject.other |
Stereotaxic Techniques |
en |
dc.title |
Detection of glaucomatous change based on vessel shape analysis |
en |
heal.type |
journalArticle |
en |
heal.identifier.primary |
10.1016/j.compmedimag.2007.11.003 |
en |
heal.identifier.secondary |
http://dx.doi.org/10.1016/j.compmedimag.2007.11.003 |
en |
heal.language |
English |
en |
heal.publicationDate |
2008 |
en |
heal.abstract |
Glaucoma, a leading cause of blindness worldwide, is a progressive optic neuropathy with characteristic structural changes in the optic nerve head and concomitant visual field defects. Ocular hypertension (i.e. elevated intraocular pressure without glaucoma) is the most important risk factor to develop glaucoma. Even though a number of variables, including various optic disc and visual field parameters, have been used in order to identify early glaucomatous damage, there is a need for computer-based methods that can detect early glaucomatous progression so that treatment to prevent further progression can be initiated. This paper is focused on the description of a system based on image processing and classification techniques for the estimation of quantitative parameters to define vessel deformation and the classification of image data into two classes: patients with ocular hypertension who develop glaucomatous damage and patients with Ocular hypertension who remain stable. The proposed system consists of the retinal image preprocessing module for vessel central axis segmentation, the automatic retinal image registration module based on a novel application of self organizing maps (SOMs) to define automatic point correspondence, the retinal vessel attributes calculation module to select the vessel shape attributes and the data classification module, using an artificial neural network classifier, to perform the necessary subject classification. Implementation of the system to optic disc data from 127 subjects obtained by a fundus camera at regular intervals provided a classification rate of 87.5%, underscoring the value of the proposed system to assist in the detection of early glaucomatous change. (C) 2007 Elsevier Ltd. All rights reserved. |
en |
heal.publisher |
PERGAMON-ELSEVIER SCIENCE LTD |
en |
heal.journalName |
Computerized Medical Imaging and Graphics |
en |
dc.identifier.doi |
10.1016/j.compmedimag.2007.11.003 |
en |
dc.identifier.isi |
ISI:000254846100003 |
en |
dc.identifier.volume |
32 |
en |
dc.identifier.issue |
3 |
en |
dc.identifier.spage |
183 |
en |
dc.identifier.epage |
192 |
en |