dc.contributor.author |
Tsouroutas, P |
en |
dc.contributor.author |
Tsoukalas, D |
en |
dc.contributor.author |
Zergioti, I |
en |
dc.contributor.author |
Cherkashin, N |
en |
dc.contributor.author |
Claverie, A |
en |
dc.date.accessioned |
2014-03-01T01:28:09Z |
|
dc.date.available |
2014-03-01T01:28:09Z |
|
dc.date.issued |
2008 |
en |
dc.identifier.issn |
13698001 |
en |
dc.identifier.uri |
https://dspace.lib.ntua.gr/xmlui/handle/123456789/18736 |
|
dc.subject |
Activation |
en |
dc.subject |
Annealing |
en |
dc.subject |
Diffusion |
en |
dc.subject |
Germanium |
en |
dc.subject |
Laser |
en |
dc.subject |
Phosphorus |
en |
dc.subject |
Simulation |
en |
dc.subject.other |
Activation |
en |
dc.subject.other |
Activation behavior |
en |
dc.subject.other |
Annealed samples |
en |
dc.subject.other |
Annealing process |
en |
dc.subject.other |
Chemical profiles |
en |
dc.subject.other |
Conventional annealing |
en |
dc.subject.other |
Dopant diffusion |
en |
dc.subject.other |
Dopant diffusivity |
en |
dc.subject.other |
Dopant loss |
en |
dc.subject.other |
Dopant profile |
en |
dc.subject.other |
Intrinsic diffusion |
en |
dc.subject.other |
Laser annealing |
en |
dc.subject.other |
Melting threshold |
en |
dc.subject.other |
Nd-YAG lasers |
en |
dc.subject.other |
Out-diffusion |
en |
dc.subject.other |
Research reports |
en |
dc.subject.other |
Segregation model |
en |
dc.subject.other |
Simulation |
en |
dc.subject.other |
Thermal processing |
en |
dc.subject.other |
Vacancy models |
en |
dc.subject.other |
Van der Pauw method |
en |
dc.subject.other |
Annealing |
en |
dc.subject.other |
Diffusion |
en |
dc.subject.other |
Electric resistance |
en |
dc.subject.other |
Experiments |
en |
dc.subject.other |
Germanium |
en |
dc.subject.other |
Ion bombardment |
en |
dc.subject.other |
Ion implantation |
en |
dc.subject.other |
Lasers |
en |
dc.subject.other |
Neodymium lasers |
en |
dc.subject.other |
Phosphorus |
en |
dc.subject.other |
Pulsed laser applications |
en |
dc.subject.other |
Secondary ion mass spectrometry |
en |
dc.subject.other |
Simulators |
en |
dc.subject.other |
Transmission electron microscopy |
en |
dc.subject.other |
Simulated annealing |
en |
dc.title |
Diffusion and activation of phosphorus in germanium |
en |
heal.type |
journalArticle |
en |
heal.identifier.primary |
10.1016/j.mssp.2008.09.005 |
en |
heal.identifier.secondary |
http://dx.doi.org/10.1016/j.mssp.2008.09.005 |
en |
heal.publicationDate |
2008 |
en |
heal.abstract |
In this work we investigate the diffusion and the activation behavior of implanted phosphorus in Ge. We used both conventional thermal processing as well as laser annealing by pulsed ns Nd-YAG laser. Chemical profiles were obtained by secondary-ion-mass spectrometry (SIMS) and sheet resistance was estimated by Van der Pauw method. These measurements demonstrated a box-shaped dopant profile for both conventional and laser annealed samples which are in agreement with other research reports indicating enhanced dopant diffusivity. From these experiments and critical comparison with other studies we conclude about the value of the intrinsic diffusion coefficient and we discuss the validity of the doubly charged vacancy model in simulating our experiments. To more accurately account for these parameters we have also implemented a pileup and a segregation model to simulate the dopant loss due to outdiffusion of phosphorus during the annealing process. In order to understand the influence of defects on transient dopant diffusion as well as on outdiffusion we have also annealed P implanted Ge prior to conventional annealing with laser above melting threshold to eliminate ion implantation defects as these are monitored by transmission electron microscopy. © 2008 Elsevier Ltd. All rights reserved. |
en |
heal.journalName |
Materials Science in Semiconductor Processing |
en |
dc.identifier.doi |
10.1016/j.mssp.2008.09.005 |
en |
dc.identifier.volume |
11 |
en |
dc.identifier.issue |
5 |
en |
dc.identifier.spage |
372 |
en |
dc.identifier.epage |
377 |
en |