HEAL DSpace

Disambiguation of greek polysemous words using hierarchical probabilistic networks and a chi-square feature selection strategy

Αποθετήριο DSpace/Manakin

Εμφάνιση απλής εγγραφής

dc.contributor.author Fragos, K en
dc.contributor.author Panetsos, S en
dc.date.accessioned 2014-03-01T01:28:10Z
dc.date.available 2014-03-01T01:28:10Z
dc.date.issued 2008 en
dc.identifier.issn 02182130 en
dc.identifier.uri https://dspace.lib.ntua.gr/xmlui/handle/123456789/18740
dc.subject Chi-square test en
dc.subject Feature selection en
dc.subject Hierarchical mixtures-of-experts en
dc.subject Word sense disambiguation en
dc.subject.other Artificial intelligence en
dc.subject.other Classification (of information) en
dc.subject.other Classifiers en
dc.subject.other Computer networks en
dc.subject.other Equivalence classes en
dc.subject.other Learning systems en
dc.subject.other Linguistics en
dc.subject.other Probability en
dc.subject.other Chi-square test en
dc.subject.other Feature selection en
dc.subject.other Hierarchical mixtures-of-experts en
dc.subject.other Polysemous words en
dc.subject.other Word sense disambiguation en
dc.subject.other Neural networks en
dc.title Disambiguation of greek polysemous words using hierarchical probabilistic networks and a chi-square feature selection strategy en
heal.type journalArticle en
heal.identifier.primary 10.1142/S0218213008004102 en
heal.identifier.secondary http://dx.doi.org/10.1142/S0218213008004102 en
heal.publicationDate 2008 en
heal.abstract In this paper, we present a robust classification technique to disambiguate Greek polysemous words based on hierarchical probabilistic networks. Assuming that the linguistic data of a polysemous word is classified to equivalent classes according to the number of its senses, we try to disambiguate them by using a hierarchical mixture of experts probabilistic model a soft version of neural networks that permits overlapping between classes and which is successfully applied in classification tasks. The model is used in combination with an effective feature selection strategy based on a Chi-square test that enhances disambiguation performance. Due to the absence of previous similar work on Greek linguistic data, for comparison we also implement and apply the very popular naïve Bayes classifier to the same data. Comparing the two systems, we find that the Hierarchical Mixtures-of-Experts (HME) model is superior to the naïve Bayes classifier, mainly because of its ability to permit overlapping and the capture of non-linearity among the data. We believe that the system can be successfully applied on real linguistic data after training on a small amount of data. © 2008 World Scientific Publishing Company. en
heal.journalName International Journal on Artificial Intelligence Tools en
dc.identifier.doi 10.1142/S0218213008004102 en
dc.identifier.volume 17 en
dc.identifier.issue 4 en
dc.identifier.spage 687 en
dc.identifier.epage 701 en


Αρχεία σε αυτό το τεκμήριο

Αρχεία Μέγεθος Μορφότυπο Προβολή

Δεν υπάρχουν αρχεία που σχετίζονται με αυτό το τεκμήριο.

Αυτό το τεκμήριο εμφανίζεται στην ακόλουθη συλλογή(ές)

Εμφάνιση απλής εγγραφής