HEAL DSpace

Efficient evolution of accurate classification rules using a combination of gene expression programming and clonal selection

Αποθετήριο DSpace/Manakin

Εμφάνιση απλής εγγραφής

dc.contributor.author Karakasis, VK en
dc.contributor.author Stafylopatis, A en
dc.date.accessioned 2014-03-01T01:28:14Z
dc.date.available 2014-03-01T01:28:14Z
dc.date.issued 2008 en
dc.identifier.issn 1089-778X en
dc.identifier.uri https://dspace.lib.ntua.gr/xmlui/handle/123456789/18771
dc.subject Artificial immune systems en
dc.subject Clonal selection principle en
dc.subject Data mining en
dc.subject Gene expression programming en
dc.subject.classification Computer Science, Artificial Intelligence en
dc.subject.classification Computer Science, Theory & Methods en
dc.subject.other Antigens en
dc.subject.other Bioactivity en
dc.subject.other Chemical shift en
dc.subject.other Computational linguistics en
dc.subject.other Computer programming en
dc.subject.other Data mining en
dc.subject.other Decision support systems en
dc.subject.other Gene expression en
dc.subject.other Genetic algorithms en
dc.subject.other Immunology en
dc.subject.other Information management en
dc.subject.other Knowledge management en
dc.subject.other Magnetic anisotropy en
dc.subject.other Artificial immune systems en
dc.subject.other Benchmark problems en
dc.subject.other Classification rules en
dc.subject.other Clonal selection algorithms en
dc.subject.other Clonal selection principle en
dc.subject.other Clonal Selection Principles en
dc.subject.other Clonal selections en
dc.subject.other CLONALG en
dc.subject.other Data classes en
dc.subject.other Data mining tasks en
dc.subject.other Evolutionary techniques en
dc.subject.other Foreign antigens en
dc.subject.other Gene expression programming en
dc.subject.other Gene Expression programmings en
dc.subject.other Hybrid techniques en
dc.subject.other Immune responses en
dc.subject.other Immune systems en
dc.subject.other Prediction accuracies en
dc.subject.other Receptor editing en
dc.subject.other Computer software selection and evaluation en
dc.title Efficient evolution of accurate classification rules using a combination of gene expression programming and clonal selection en
heal.type journalArticle en
heal.identifier.primary 10.1109/TEVC.2008.920673 en
heal.identifier.secondary http://dx.doi.org/10.1109/TEVC.2008.920673 en
heal.language English en
heal.publicationDate 2008 en
heal.abstract A hybrid evolutionary technique is proposed for data mining tasks, which combines a principle inspired by the immune system, namely the clonal selection principle, with a more common, though very efficient, evolutionary technique, gene expression programming (GEP). The clonal selection principle regulates the immune response in order to successfully recognize and confront any foreign antigen, and at the same time allows the amelioration of the immune response across successive appearances of the same antigen. On the other hand, gene expression programming is the descendant of genetic algorithms and genetic programming and eliminates their main disadvantages, such as the genotype-phenotype coincidence, though it preserves their advantageous features. In order to perform the data mining task, the proposed algorithm introduces the notion of a data class antigen, which is used to represent a class of data. the produced rules are evolved by our clonal selection algorithm (CSA), which extends the recently proposed CLONALG algorithm. In CSA, among other new features, a receptor editing step has been incorporated. Moreover, the rules themselves are represented as antibodies that are coded as GEP chromosomes in order to exploit the flexibility and the expressiveness of such encoding. The proposed hybrid technique is tested on a set of benchmark problems in comparison to GEP. In almost all problems considered, the results are very satisfactory and outperform conventional GEP both in terms of prediction accuracy and computational efficiency. © 2008 IEEE. en
heal.publisher IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC en
heal.journalName IEEE Transactions on Evolutionary Computation en
dc.identifier.doi 10.1109/TEVC.2008.920673 en
dc.identifier.isi ISI:000261544100002 en
dc.identifier.volume 12 en
dc.identifier.issue 6 en
dc.identifier.spage 662 en
dc.identifier.epage 678 en


Αρχεία σε αυτό το τεκμήριο

Αρχεία Μέγεθος Μορφότυπο Προβολή

Δεν υπάρχουν αρχεία που σχετίζονται με αυτό το τεκμήριο.

Αυτό το τεκμήριο εμφανίζεται στην ακόλουθη συλλογή(ές)

Εμφάνιση απλής εγγραφής