dc.contributor.author |
Papageorgiou, NS |
en |
dc.contributor.author |
Andrade Santos, SR |
en |
dc.contributor.author |
Staicu, V |
en |
dc.date.accessioned |
2014-03-01T01:28:14Z |
|
dc.date.available |
2014-03-01T01:28:14Z |
|
dc.date.issued |
2008 |
en |
dc.identifier.issn |
0927-6947 |
en |
dc.identifier.uri |
https://dspace.lib.ntua.gr/xmlui/handle/123456789/18773 |
|
dc.subject |
AR-condition |
en |
dc.subject |
Generalized subdifferential |
en |
dc.subject |
Linking set |
en |
dc.subject |
Locally Lipschitz function |
en |
dc.subject |
Multiple solutions |
en |
dc.subject.classification |
Mathematics, Applied |
en |
dc.subject.other |
CRITICAL-POINT THEORY |
en |
dc.subject.other |
MULTIPLE SOLUTIONS |
en |
dc.title |
Eigenvalue problems for hemivariational inequalities |
en |
heal.type |
journalArticle |
en |
heal.identifier.primary |
10.1007/s11228-008-0100-1 |
en |
heal.identifier.secondary |
http://dx.doi.org/10.1007/s11228-008-0100-1 |
en |
heal.language |
English |
en |
heal.publicationDate |
2008 |
en |
heal.abstract |
We consider a semilinear eigenvalue problem with a nonsmooth potential (hemivariational inequality). Using a nonsmooth analog of the local Ambrosetti-Rabinowitz condition (AR-condition), we show that the problem has a nontrivial smooth solution. In the scalar case, we show that we can relax the local AR-condition. Finally, for the resonant λ∈=∈λ 1 problem, using the nonsmooth version of the local linking theorem, we show that the problem has at least two nontrivial solutions. Our approach is variational, using minimax methods from the nonsmooth critical point theory. © 2008 Springer Science+Business Media B.V. |
en |
heal.publisher |
SPRINGER |
en |
heal.journalName |
Set-Valued Analysis |
en |
dc.identifier.doi |
10.1007/s11228-008-0100-1 |
en |
dc.identifier.isi |
ISI:000262125700014 |
en |
dc.identifier.volume |
16 |
en |
dc.identifier.issue |
7-8 |
en |
dc.identifier.spage |
1061 |
en |
dc.identifier.epage |
1087 |
en |