dc.contributor.author |
Filippakis, ME |
en |
dc.contributor.author |
Papageorgiou, NS |
en |
dc.contributor.author |
Staicu, V |
en |
dc.date.accessioned |
2014-03-01T01:28:14Z |
|
dc.date.available |
2014-03-01T01:28:14Z |
|
dc.date.issued |
2008 |
en |
dc.identifier.issn |
0362-546X |
en |
dc.identifier.uri |
https://dspace.lib.ntua.gr/xmlui/handle/123456789/18774 |
|
dc.subject |
Fixed point |
en |
dc.subject |
Generalized subdifferential |
en |
dc.subject |
m-accretive operator |
en |
dc.subject |
Monotone operator |
en |
dc.subject |
Multiple solutions |
en |
dc.subject |
Nonlinear regularity theory |
en |
dc.subject |
Nonsmooth PS-condition |
en |
dc.subject |
Spectrum of p-Laplacian |
en |
dc.subject.classification |
Mathematics, Applied |
en |
dc.subject.classification |
Mathematics |
en |
dc.subject.other |
Constraint theory |
en |
dc.subject.other |
Eigenvalues and eigenfunctions |
en |
dc.subject.other |
Laplace equation |
en |
dc.subject.other |
Linear matrix inequalities |
en |
dc.subject.other |
Mathematical operators |
en |
dc.subject.other |
Topology |
en |
dc.subject.other |
Critical point theory |
en |
dc.subject.other |
Fixed points |
en |
dc.subject.other |
Generalized subdifferentials |
en |
dc.subject.other |
Monotone operators |
en |
dc.subject.other |
Multiple solutions |
en |
dc.subject.other |
Nonlinear regularity theory |
en |
dc.subject.other |
Nonsmooth PS conditions |
en |
dc.subject.other |
Spectrum of p Laplacians |
en |
dc.subject.other |
Nonlinear equations |
en |
dc.title |
Eigenvalue problems for nonlinear elliptic equations with unilateral constraints |
en |
heal.type |
journalArticle |
en |
heal.identifier.primary |
10.1016/j.na.2007.05.002 |
en |
heal.identifier.secondary |
http://dx.doi.org/10.1016/j.na.2007.05.002 |
en |
heal.language |
English |
en |
heal.publicationDate |
2008 |
en |
heal.abstract |
In this paper we Study eigenvalue problems for hemivariational and variational inequalities driven by the p-Laplacian differential operator. Using topological methods (based on multivalued versions of the Leray-Schauder alternative principle) and variational methods (based on the nonsmooth critical point theory), we prove existence and multiplicity results for the eigenvalue problems that we examine. (C) 2007 Elsevier Ltd. All rights reserved. |
en |
heal.publisher |
PERGAMON-ELSEVIER SCIENCE LTD |
en |
heal.journalName |
Nonlinear Analysis, Theory, Methods and Applications |
en |
dc.identifier.doi |
10.1016/j.na.2007.05.002 |
en |
dc.identifier.isi |
ISI:000256952200008 |
en |
dc.identifier.volume |
69 |
en |
dc.identifier.issue |
1 |
en |
dc.identifier.spage |
85 |
en |
dc.identifier.epage |
109 |
en |