HEAL DSpace

Empirical and analytical investigation of traffic flow regimes and transitions in signalized arterials

Αποθετήριο DSpace/Manakin

Εμφάνιση απλής εγγραφής

dc.contributor.author Vlahogianni, EI en
dc.contributor.author Geroliminis, N en
dc.contributor.author Skabardonis, A en
dc.date.accessioned 2014-03-01T01:28:15Z
dc.date.available 2014-03-01T01:28:15Z
dc.date.issued 2008 en
dc.identifier.issn 0733-947X en
dc.identifier.uri https://dspace.lib.ntua.gr/xmlui/handle/123456789/18780
dc.subject Bayesian analysis en
dc.subject Fuzzy sets en
dc.subject Kinematic wave theory en
dc.subject Time series analysis en
dc.subject Traffic analysis en
dc.subject Traffic models en
dc.subject Traffic signals en
dc.subject Wavelet en
dc.subject.classification Engineering, Civil en
dc.subject.classification Transportation Science & Technology en
dc.subject.other Bayesian networks en
dc.subject.other Boundary value problems en
dc.subject.other Fuzzy sets en
dc.subject.other Inference engines en
dc.subject.other Kinematics en
dc.subject.other Speech recognition en
dc.subject.other Time series analysis en
dc.subject.other Traffic signals en
dc.subject.other Traffic surveys en
dc.subject.other Bayesian analysis en
dc.subject.other Kinematic wave theory en
dc.subject.other Traffic analysis en
dc.subject.other Traffic models en
dc.subject.other Wavelet en
dc.subject.other Computer networks en
dc.subject.other Bayesian analysis en
dc.subject.other boundary condition en
dc.subject.other empirical analysis en
dc.subject.other fuzzy mathematics en
dc.subject.other planning method en
dc.subject.other time series analysis en
dc.subject.other traffic management en
dc.title Empirical and analytical investigation of traffic flow regimes and transitions in signalized arterials en
heal.type journalArticle en
heal.identifier.primary 10.1061/(ASCE)0733-947X(2008)134:12(512) en
heal.identifier.secondary http://dx.doi.org/10.1061/(ASCE)0733-947X(2008)134:12(512) en
heal.language English en
heal.publicationDate 2008 en
heal.abstract The paper presents a methodological framework that integrates different data-driven techniques in order to detect the different traffic flow regimes (free flow, congested conditions, and so on) observed in signalized arterials as well as the manner traffic flow shifts from one regime to another (transitions). Traffic flow is determined by the joint consideration of the temporal evolution of volume and occupancy. The boundary conditions of the different regimes are identified via a fuzzy wavelet approach based on the volume-occupancy relationship. Moreover, a Bayesian network is developed in order to discover hidden associations between the observed shifts and the traffic flow conditions they occur. Results from the data-driven approach indicate the existence of four distinct traffic flow regimes; these regimes hold in arterials with different geometric and signalization characteristics. Finally, results are further discussed via an analytical model based on the kinematic wave theory; the comparative study of both approaches provides strong evidence that the presented statistical framework is in agreement with a simple and elegant analysis including traffic parameters that are observable and measurable. © 2008 ASCE. en
heal.publisher ASCE-AMER SOC CIVIL ENGINEERS en
heal.journalName Journal of Transportation Engineering en
dc.identifier.doi 10.1061/(ASCE)0733-947X(2008)134:12(512) en
dc.identifier.isi ISI:000260940500003 en
dc.identifier.volume 134 en
dc.identifier.issue 12 en
dc.identifier.spage 512 en
dc.identifier.epage 522 en


Αρχεία σε αυτό το τεκμήριο

Αρχεία Μέγεθος Μορφότυπο Προβολή

Δεν υπάρχουν αρχεία που σχετίζονται με αυτό το τεκμήριο.

Αυτό το τεκμήριο εμφανίζεται στην ακόλουθη συλλογή(ές)

Εμφάνιση απλής εγγραφής