HEAL DSpace

Enhancing cognitive radio systems with robust reasoning

Αποθετήριο DSpace/Manakin

Εμφάνιση απλής εγγραφής

dc.contributor.author Adamopoulou, E en
dc.contributor.author Demestichas, K en
dc.contributor.author Demestichas, P en
dc.contributor.author Theologou, M en
dc.date.accessioned 2014-03-01T01:28:16Z
dc.date.available 2014-03-01T01:28:16Z
dc.date.issued 2008 en
dc.identifier.issn 1074-5351 en
dc.identifier.uri https://dspace.lib.ntua.gr/xmlui/handle/123456789/18789
dc.subject Bayesian networks en
dc.subject Cognitive radio en
dc.subject Interference sensing en
dc.subject Machine learning en
dc.subject Reasoning en
dc.subject.classification Engineering, Electrical & Electronic en
dc.subject.classification Telecommunications en
dc.subject.other Algorithms en
dc.subject.other Bayesian networks en
dc.subject.other Cognitive systems en
dc.subject.other Learning systems en
dc.subject.other Problem solving en
dc.subject.other Robust control en
dc.subject.other Interference sensing en
dc.subject.other Robust reasoning en
dc.subject.other Transmission capacity en
dc.subject.other Radio systems en
dc.title Enhancing cognitive radio systems with robust reasoning en
heal.type journalArticle en
heal.identifier.primary 10.1002/dac.898 en
heal.identifier.secondary http://dx.doi.org/10.1002/dac.898 en
heal.language English en
heal.publicationDate 2008 en
heal.abstract Cognitive radio systems dynamically reconfigure the algorithms and parameters they use, in order to adapt to the changing environment conditions. However, reaching proper reconfiguration decisions presupposes a way of knowing, with high enough assurance, the capabilities of the alternate configurations, especially in terms of achievable transmission capacity and coverage. The present paper addresses this problem, firstly, by specifying a complete process for extracting estimations of the capabilities of candidate configurations, in terms of transmission capacity and coverage, and, secondly, by enhancing these estimations with the employment of a machine learning technique. The technique is based on the use of Bayesian Networks, in conjunction with an effective learning and adaptation strategy, and aims at extracting and exploiting knowledge and experience, in order to reach robust (i.e. stable and reliable) estimations of the configurations' capabilities. Comprehensive results of the proposed method are presented, in order to validate its functionality. Copyright (C) 2007 John Wiley & Sons, Ltd. en
heal.publisher JOHN WILEY & SONS LTD en
heal.journalName International Journal of Communication Systems en
dc.identifier.doi 10.1002/dac.898 en
dc.identifier.isi ISI:000254409100005 en
dc.identifier.volume 21 en
dc.identifier.issue 3 en
dc.identifier.spage 311 en
dc.identifier.epage 330 en


Αρχεία σε αυτό το τεκμήριο

Αρχεία Μέγεθος Μορφότυπο Προβολή

Δεν υπάρχουν αρχεία που σχετίζονται με αυτό το τεκμήριο.

Αυτό το τεκμήριο εμφανίζεται στην ακόλουθη συλλογή(ές)

Εμφάνιση απλής εγγραφής