dc.contributor.author |
Gasinski, L |
en |
dc.contributor.author |
Papageorgiou, NS |
en |
dc.date.accessioned |
2014-03-01T01:28:22Z |
|
dc.date.available |
2014-03-01T01:28:22Z |
|
dc.date.issued |
2008 |
en |
dc.identifier.issn |
1536-1365 |
en |
dc.identifier.uri |
https://dspace.lib.ntua.gr/xmlui/handle/123456789/18818 |
|
dc.relation.uri |
http://www.scopus.com/inward/record.url?eid=2-s2.0-77955797103&partnerID=40&md5=19b5949f4cc61d68cef0b4ae5d2052d5 |
en |
dc.subject |
Cerami condition |
en |
dc.subject |
Local linking |
en |
dc.subject |
P-Laplacian-type equation |
en |
dc.subject |
P-superlinear problem |
en |
dc.subject |
Second deformation theorem |
en |
dc.subject.classification |
Mathematics, Applied |
en |
dc.subject.classification |
Mathematics |
en |
dc.subject.other |
ELLIPTIC-EQUATIONS |
en |
dc.title |
Existence and multiplicity of solutions for neumann p-laplacian-type equations |
en |
heal.type |
journalArticle |
en |
heal.language |
English |
en |
heal.publicationDate |
2008 |
en |
heal.abstract |
We consider nonlinear Neumann problems driven by p-Laplacian-type operators which are not homogeneous in general. We prove all existence and a multiplicity result for such problems. In the existence theorem, we assume that the right hand side nonlinearity is p-superlinear but need not satisfy the Ambrosetti-Rabinowitz condition. In the multiplicity result, when specialized to the case of the p-Laplacian, we allow strong resonance at; infinity and resonance at 0. |
en |
heal.publisher |
ADVANCED NONLINEAR STUDIES, INC |
en |
heal.journalName |
Advanced Nonlinear Studies |
en |
dc.identifier.isi |
ISI:000259875500011 |
en |
dc.identifier.volume |
8 |
en |
dc.identifier.issue |
4 |
en |
dc.identifier.spage |
843 |
en |
dc.identifier.epage |
870 |
en |