dc.contributor.author |
Filippakis, ME |
en |
dc.date.accessioned |
2014-03-01T01:28:22Z |
|
dc.date.available |
2014-03-01T01:28:22Z |
|
dc.date.issued |
2008 |
en |
dc.identifier.issn |
0362-546X |
en |
dc.identifier.uri |
https://dspace.lib.ntua.gr/xmlui/handle/123456789/18819 |
|
dc.subject |
Coercive functional |
en |
dc.subject |
Palais-Smale condition |
en |
dc.subject |
Positive solution |
en |
dc.subject.classification |
Mathematics, Applied |
en |
dc.subject.classification |
Mathematics |
en |
dc.subject.other |
Function evaluation |
en |
dc.subject.other |
Laplace equation |
en |
dc.subject.other |
Problem solving |
en |
dc.subject.other |
Theorem proving |
en |
dc.subject.other |
Variational techniques |
en |
dc.subject.other |
Coercive functional |
en |
dc.subject.other |
Positive solution |
en |
dc.subject.other |
Nonlinear systems |
en |
dc.title |
Existence and multiplicity results for nonlinear nonautonomous second-order systems |
en |
heal.type |
journalArticle |
en |
heal.identifier.primary |
10.1016/j.na.2006.12.046 |
en |
heal.identifier.secondary |
http://dx.doi.org/10.1016/j.na.2006.12.046 |
en |
heal.language |
English |
en |
heal.publicationDate |
2008 |
en |
heal.abstract |
In this paper we consider nonlinear periodic systems driven by the ordinary p-Laplacian and having a nonsmooth potential function. Under minimal and natural hypotheses on the nonsmooth potential and using variational methods based on the nonsmooth critical point theory we prove four existence theorems and a multiplicity theorem. We conclude the paper with an existence theorem for the scalar problem, in which the energy functional is indefinite (i.e. it is unbounded both above and below). (C) 2008 Published by Elsevier Ltd. |
en |
heal.publisher |
PERGAMON-ELSEVIER SCIENCE LTD |
en |
heal.journalName |
Nonlinear Analysis, Theory, Methods and Applications |
en |
dc.identifier.doi |
10.1016/j.na.2006.12.046 |
en |
dc.identifier.isi |
ISI:000253882100015 |
en |
dc.identifier.volume |
68 |
en |
dc.identifier.issue |
6 |
en |
dc.identifier.spage |
1611 |
en |
dc.identifier.epage |
1626 |
en |