dc.contributor.author |
Jebelean, P |
en |
dc.contributor.author |
Papageorgiou, NS |
en |
dc.date.accessioned |
2014-03-01T01:28:22Z |
|
dc.date.available |
2014-03-01T01:28:22Z |
|
dc.date.issued |
2008 |
en |
dc.identifier.issn |
0927-6947 |
en |
dc.identifier.uri |
https://dspace.lib.ntua.gr/xmlui/handle/123456789/18820 |
|
dc.subject |
(S)∈+∈ operator |
en |
dc.subject |
Degree theory |
en |
dc.subject |
Generalized subdifferential |
en |
dc.subject |
Homotopy invariance |
en |
dc.subject |
Quasilinear nonvariational differential operator |
en |
dc.subject.classification |
Mathematics, Applied |
en |
dc.subject.other |
P-LAPLACIAN |
en |
dc.title |
Existence of solutions for a class of nonvariational quasilinear periodic problems |
en |
heal.type |
journalArticle |
en |
heal.identifier.primary |
10.1007/s11228-008-0091-y |
en |
heal.identifier.secondary |
http://dx.doi.org/10.1007/s11228-008-0091-y |
en |
heal.language |
English |
en |
heal.publicationDate |
2008 |
en |
heal.abstract |
We consider a nonlinear nonvariational periodic problem with a nonsmooth potential. Using the spectrum of the asymptotic (as |x| →∈∞) differential operator and degree theoretic methods based on the degree map for multivalued perturbations of (S)∈+∈ operators, we establish the existence of a nontrivial smooth solution. © 2008 Springer Science+Business Media B.V. |
en |
heal.publisher |
SPRINGER |
en |
heal.journalName |
Set-Valued Analysis |
en |
dc.identifier.doi |
10.1007/s11228-008-0091-y |
en |
dc.identifier.isi |
ISI:000262125700007 |
en |
dc.identifier.volume |
16 |
en |
dc.identifier.issue |
7-8 |
en |
dc.identifier.spage |
923 |
en |
dc.identifier.epage |
941 |
en |