HEAL DSpace

Explicit wave-averaged primitive equations using a generalized Lagrangian mean

Αποθετήριο DSpace/Manakin

Εμφάνιση απλής εγγραφής

dc.contributor.author Ardhuin, F en
dc.contributor.author Rascle, N en
dc.contributor.author Belibassakis, KA en
dc.date.accessioned 2014-03-01T01:28:23Z
dc.date.available 2014-03-01T01:28:23Z
dc.date.issued 2008 en
dc.identifier.issn 1463-5003 en
dc.identifier.uri https://dspace.lib.ntua.gr/xmlui/handle/123456789/18830
dc.subject Drift en
dc.subject Generalized Lagrangian mean en
dc.subject Radiation stresses en
dc.subject Surface waves en
dc.subject Three dimensions en
dc.subject Wave-current coupling en
dc.subject.classification Meteorology & Atmospheric Sciences en
dc.subject.classification Oceanography en
dc.subject.other Approximation theory en
dc.subject.other Euler equations en
dc.subject.other Flow interactions en
dc.subject.other Mass transfer en
dc.subject.other Mathematical models en
dc.subject.other Ocean currents en
dc.subject.other Turbulence en
dc.subject.other Wave equations en
dc.subject.other Generalized Lagrangian mean theory en
dc.subject.other Radiation stresses en
dc.subject.other Wave-current coupling en
dc.subject.other Water waves en
dc.subject.other Eulerian analysis en
dc.subject.other Lagrangian analysis en
dc.subject.other mass transport en
dc.subject.other surface wave en
dc.subject.other turbulent flow en
dc.subject.other vertical profile en
dc.subject.other water depth en
dc.subject.other wave equation en
dc.subject.other wave field en
dc.subject.other wave force en
dc.title Explicit wave-averaged primitive equations using a generalized Lagrangian mean en
heal.type journalArticle en
heal.identifier.primary 10.1016/j.ocemod.2007.07.001 en
heal.identifier.secondary http://dx.doi.org/10.1016/j.ocemod.2007.07.001 en
heal.language English en
heal.publicationDate 2008 en
heal.abstract The generalized Langrangian mean theory provides exact equations for general wave turbulence-mean flow interactions in three dimensions. For practical applications, these equations must be closed by specifying the wave forcing terms. Here an approximate closure is obtained under the hypotheses of small surface slope, weak horizontal gradients of the water depth and mean current, and weak curvature of the mean current profile. These assumptions yield analytical expressions for the mean momentum and pressure forcing terms that can be expressed in terms of the wave spectrum. A vertical change of coordinate is then applied to obtain glm2z-RANS equations with non-divergent mass transport in cartesian coordinates. To lowest order, agreement is found with Eulerian mean theories, and the present approximation provides an explicit extension of known wave-averaged equations to short-scale variations of the wave field, and vertically varying currents only limited to weak or localized profile curvatures. Further, the underlying exact equations provide a natural framework for extensions to finite wave amplitudes and any realistic situation. The accuracy of the approximations is discussed using comparisons with exact numerical solutions for linear waves over arbitrary bottom slopes, for which the equations are still exact when properly accounting for partial standing waves. For finite amplitude waves it is found that the approximate solutions are probably accurate for ocean mixed layer modelling and shoaling waves, provided that an adequate turbulent closure is designed. However, for surf zone applications the approximations are expected to give only qualitative results due to the large influence of wave nonlinearity on the vertical profiles of wave forcing terms. (c) 2007 Published by Elsevier Ltd. en
heal.publisher ELSEVIER SCI LTD en
heal.journalName Ocean Modelling en
dc.identifier.doi 10.1016/j.ocemod.2007.07.001 en
dc.identifier.isi ISI:000253019300003 en
dc.identifier.volume 20 en
dc.identifier.issue 1 en
dc.identifier.spage 35 en
dc.identifier.epage 60 en


Αρχεία σε αυτό το τεκμήριο

Αρχεία Μέγεθος Μορφότυπο Προβολή

Δεν υπάρχουν αρχεία που σχετίζονται με αυτό το τεκμήριο.

Αυτό το τεκμήριο εμφανίζεται στην ακόλουθη συλλογή(ές)

Εμφάνιση απλής εγγραφής