dc.contributor.author |
Ardhuin, F |
en |
dc.contributor.author |
Rascle, N |
en |
dc.contributor.author |
Belibassakis, KA |
en |
dc.date.accessioned |
2014-03-01T01:28:23Z |
|
dc.date.available |
2014-03-01T01:28:23Z |
|
dc.date.issued |
2008 |
en |
dc.identifier.issn |
1463-5003 |
en |
dc.identifier.uri |
https://dspace.lib.ntua.gr/xmlui/handle/123456789/18830 |
|
dc.subject |
Drift |
en |
dc.subject |
Generalized Lagrangian mean |
en |
dc.subject |
Radiation stresses |
en |
dc.subject |
Surface waves |
en |
dc.subject |
Three dimensions |
en |
dc.subject |
Wave-current coupling |
en |
dc.subject.classification |
Meteorology & Atmospheric Sciences |
en |
dc.subject.classification |
Oceanography |
en |
dc.subject.other |
Approximation theory |
en |
dc.subject.other |
Euler equations |
en |
dc.subject.other |
Flow interactions |
en |
dc.subject.other |
Mass transfer |
en |
dc.subject.other |
Mathematical models |
en |
dc.subject.other |
Ocean currents |
en |
dc.subject.other |
Turbulence |
en |
dc.subject.other |
Wave equations |
en |
dc.subject.other |
Generalized Lagrangian mean theory |
en |
dc.subject.other |
Radiation stresses |
en |
dc.subject.other |
Wave-current coupling |
en |
dc.subject.other |
Water waves |
en |
dc.subject.other |
Eulerian analysis |
en |
dc.subject.other |
Lagrangian analysis |
en |
dc.subject.other |
mass transport |
en |
dc.subject.other |
surface wave |
en |
dc.subject.other |
turbulent flow |
en |
dc.subject.other |
vertical profile |
en |
dc.subject.other |
water depth |
en |
dc.subject.other |
wave equation |
en |
dc.subject.other |
wave field |
en |
dc.subject.other |
wave force |
en |
dc.title |
Explicit wave-averaged primitive equations using a generalized Lagrangian mean |
en |
heal.type |
journalArticle |
en |
heal.identifier.primary |
10.1016/j.ocemod.2007.07.001 |
en |
heal.identifier.secondary |
http://dx.doi.org/10.1016/j.ocemod.2007.07.001 |
en |
heal.language |
English |
en |
heal.publicationDate |
2008 |
en |
heal.abstract |
The generalized Langrangian mean theory provides exact equations for general wave turbulence-mean flow interactions in three dimensions. For practical applications, these equations must be closed by specifying the wave forcing terms. Here an approximate closure is obtained under the hypotheses of small surface slope, weak horizontal gradients of the water depth and mean current, and weak curvature of the mean current profile. These assumptions yield analytical expressions for the mean momentum and pressure forcing terms that can be expressed in terms of the wave spectrum. A vertical change of coordinate is then applied to obtain glm2z-RANS equations with non-divergent mass transport in cartesian coordinates. To lowest order, agreement is found with Eulerian mean theories, and the present approximation provides an explicit extension of known wave-averaged equations to short-scale variations of the wave field, and vertically varying currents only limited to weak or localized profile curvatures. Further, the underlying exact equations provide a natural framework for extensions to finite wave amplitudes and any realistic situation. The accuracy of the approximations is discussed using comparisons with exact numerical solutions for linear waves over arbitrary bottom slopes, for which the equations are still exact when properly accounting for partial standing waves. For finite amplitude waves it is found that the approximate solutions are probably accurate for ocean mixed layer modelling and shoaling waves, provided that an adequate turbulent closure is designed. However, for surf zone applications the approximations are expected to give only qualitative results due to the large influence of wave nonlinearity on the vertical profiles of wave forcing terms. (c) 2007 Published by Elsevier Ltd. |
en |
heal.publisher |
ELSEVIER SCI LTD |
en |
heal.journalName |
Ocean Modelling |
en |
dc.identifier.doi |
10.1016/j.ocemod.2007.07.001 |
en |
dc.identifier.isi |
ISI:000253019300003 |
en |
dc.identifier.volume |
20 |
en |
dc.identifier.issue |
1 |
en |
dc.identifier.spage |
35 |
en |
dc.identifier.epage |
60 |
en |