dc.contributor.author |
Zestanakis, PA |
en |
dc.contributor.author |
Xanthakis, JP |
en |
dc.date.accessioned |
2014-03-01T01:28:23Z |
|
dc.date.available |
2014-03-01T01:28:23Z |
|
dc.date.issued |
2008 |
en |
dc.identifier.issn |
0021-8979 |
en |
dc.identifier.uri |
https://dspace.lib.ntua.gr/xmlui/handle/123456789/18838 |
|
dc.subject.classification |
Physics, Applied |
en |
dc.subject.other |
Carbon |
en |
dc.subject.other |
Cleaning |
en |
dc.subject.other |
Electric currents |
en |
dc.subject.other |
Field emission |
en |
dc.subject.other |
Multiwalled carbon nanotubes (MWCN) |
en |
dc.subject.other |
Nanocomposites |
en |
dc.subject.other |
Nanostructured materials |
en |
dc.subject.other |
Nanostructures |
en |
dc.subject.other |
Nanotubes |
en |
dc.subject.other |
Two dimensional |
en |
dc.subject.other |
Angle dependences |
en |
dc.subject.other |
Cleaning processes |
en |
dc.subject.other |
Emission charac-teristics |
en |
dc.subject.other |
Image potentials |
en |
dc.subject.other |
Low fields |
en |
dc.subject.other |
Multi-dimensional |
en |
dc.subject.other |
Multiwall carbon nanotubes |
en |
dc.subject.other |
Non linearities |
en |
dc.subject.other |
Planar surfaces |
en |
dc.subject.other |
Transmission coefficients |
en |
dc.subject.other |
WKB methods |
en |
dc.subject.other |
Carbon nanotubes |
en |
dc.title |
Field emission from open multiwall carbon nanotubes: A case of non-Fowler-Nordheim behavior. |
en |
heal.type |
journalArticle |
en |
heal.identifier.primary |
10.1063/1.3008040 |
en |
heal.identifier.secondary |
094312 |
en |
heal.identifier.secondary |
http://dx.doi.org/10.1063/1.3008040 |
en |
heal.language |
English |
en |
heal.publicationDate |
2008 |
en |
heal.abstract |
Open multiwall carbon nanotubes (MWCNTs) have a non-Fowler-Nordheim (non-FN) emission characteristic, even after the cleaning process, in contrast to closed carbon nanotubes (CNTs), which become FN-like after the cleaning process. We have calculated the emitted current from open MWCNTs using our previously calculated transmission coefficients, which were derived by the use of a multidimensional WKB method. Our results reveal that the non-FN behavior of open CNTs should be attributed to the following two features of the two-dimensional (angle and distance dependent) tunneling potential V(r, theta). (a) V(r, theta) deviates from the approximately linear (with distance) potentials associated with planar surfaces with this nonlinearity having nothing to do with the image potential. (b) The individual walls of the MWCNTs essentially see different tunneling potentials due to the angle dependence of V(r, theta). From our calculations we also find that only a few layers of the open MWCNTs contribute to the current at low fields. At higher fields, more layers become active. (C) 2008 American Institute of Physics. [DOI: 10.1063/1.3008040] |
en |
heal.publisher |
AMER INST PHYSICS |
en |
heal.journalName |
Journal of Applied Physics |
en |
dc.identifier.doi |
10.1063/1.3008040 |
en |
dc.identifier.isi |
ISI:000260941700108 |
en |
dc.identifier.volume |
104 |
en |
dc.identifier.issue |
9 |
en |