HEAL DSpace

Flexural-torsional buckling analysis of composite beams by BEM including shear deformation effect

Αποθετήριο DSpace/Manakin

Εμφάνιση απλής εγγραφής

dc.contributor.author Sapountzakis, EJ en
dc.contributor.author Dourakopoulos, JA en
dc.date.accessioned 2014-03-01T01:28:24Z
dc.date.available 2014-03-01T01:28:24Z
dc.date.issued 2008 en
dc.identifier.issn 0093-6413 en
dc.identifier.uri https://dspace.lib.ntua.gr/xmlui/handle/123456789/18844
dc.subject Bar en
dc.subject Boundary element method en
dc.subject Composite beam en
dc.subject Flexural en
dc.subject Flexural-torsional buckling en
dc.subject Nonuniform torsion en
dc.subject Shear deformation en
dc.subject Timoshenko beam en
dc.subject Twist en
dc.subject Warping en
dc.subject.classification Mechanics en
dc.subject.other Boundary conditions en
dc.subject.other Boundary integral equations en
dc.subject.other Boundary value problems en
dc.subject.other Buckling en
dc.subject.other Composite beams and girders en
dc.subject.other Deformation en
dc.subject.other Difference equations en
dc.subject.other Differential equations en
dc.subject.other Differentiation (calculus) en
dc.subject.other Initial value problems en
dc.subject.other Integral equations en
dc.subject.other Molecular beam epitaxy en
dc.subject.other Numerical analysis en
dc.subject.other Ordinary differential equations en
dc.subject.other Poisson ratio en
dc.subject.other Shear deformation en
dc.subject.other Weaving en
dc.subject.other Analog equation method en
dc.subject.other Applied loads en
dc.subject.other Bar en
dc.subject.other Basic equations en
dc.subject.other Boundary conditioning en
dc.subject.other Boundary elements en
dc.subject.other Boundary integral equation approach en
dc.subject.other Buckling loads en
dc.subject.other Co-ordinate systems en
dc.subject.other Composite beam en
dc.subject.other Composite beams en
dc.subject.other Distributed loadings en
dc.subject.other Finite numbers en
dc.subject.other Flexural en
dc.subject.other Flexural-torsional en
dc.subject.other Flexural-torsional buckling en
dc.subject.other Integral representations en
dc.subject.other Linear buckling analysis en
dc.subject.other Mathematical formulas en
dc.subject.other Nonuniform torsion en
dc.subject.other Shear deformation coefficients en
dc.subject.other Shear modulus en
dc.subject.other Stress functions en
dc.subject.other Stress resultants en
dc.subject.other Timoshenko beam en
dc.subject.other Timoshenko beams en
dc.subject.other Transverse displacements en
dc.subject.other Twist en
dc.subject.other Warping en
dc.subject.other Warping functions en
dc.subject.other Boundary element method en
dc.title Flexural-torsional buckling analysis of composite beams by BEM including shear deformation effect en
heal.type journalArticle en
heal.identifier.primary 10.1016/j.mechrescom.2008.06.007 en
heal.identifier.secondary http://dx.doi.org/10.1016/j.mechrescom.2008.06.007 en
heal.language English en
heal.publicationDate 2008 en
heal.abstract In this paper, a boundary element method is developed for the general flexural-torsional linear buckling analysis of Timoshenko beams of arbitrarily shaped composite cross-section. The composite beam consists of materials in contact, each of which can surround a finite number of inclusions. The materials have different elasticity and shear moduli with same Poisson's ratio and are firmly bonded together. The beam is subjected to a compressive centrally applied load together with arbitrarily axial, transverse and/or torsional distributed loading, while its edges are restrained by the most general linear boundary conditions. The resulting boundary value problem, described by three coupled ordinary differential equations, is solved employing a boundary integral equation approach. Besides the effectiveness and accuracy of the developed method, a significant advantage is that the method can treat composite beams of both thin and thick walled cross-sections taking into account the warping along the thickness of the walls, while the displacements as well as the stress resultants are computed at any cross-section of the beam using the respective integral representations as mathematical formulae. All basic equations are formulated with respect to the principal shear axes coordinate system, which does not coincide with the principal bending one in a nonsymmetric cross-section. To account for shear deformations, the concept of shear deformation coefficients is used. Six coupled boundary value problems are formulated with respect to the transverse displacements, to the angle of twist, to the primary warping function and to two stress functions and solved using the analog equation method, a BEM based method. Several beams are analysed to illustrate the method and demonstrate its efficiency. The significant influence of the boundary conditions and the shear deformation effect on the buckling load are investigated through examples with great practical interest. (C) 2008 Elsevier Ltd. All rights reserved. en
heal.publisher PERGAMON-ELSEVIER SCIENCE LTD en
heal.journalName Mechanics Research Communications en
dc.identifier.doi 10.1016/j.mechrescom.2008.06.007 en
dc.identifier.isi ISI:000259419100002 en
dc.identifier.volume 35 en
dc.identifier.issue 8 en
dc.identifier.spage 497 en
dc.identifier.epage 516 en


Αρχεία σε αυτό το τεκμήριο

Αρχεία Μέγεθος Μορφότυπο Προβολή

Δεν υπάρχουν αρχεία που σχετίζονται με αυτό το τεκμήριο.

Αυτό το τεκμήριο εμφανίζεται στην ακόλουθη συλλογή(ές)

Εμφάνιση απλής εγγραφής