HEAL DSpace

Free vibrations of circular plates with axisymmetric thickness variation

Αποθετήριο DSpace/Manakin

Εμφάνιση απλής εγγραφής

dc.contributor.author Nerantzaki, MS en
dc.date.accessioned 2014-03-01T01:28:29Z
dc.date.available 2014-03-01T01:28:29Z
dc.date.issued 2008 en
dc.identifier.issn 0309-3247 en
dc.identifier.uri https://dspace.lib.ntua.gr/xmlui/handle/123456789/18851
dc.subject Analogue equation method en
dc.subject Boundary elements en
dc.subject Circular plate en
dc.subject Integral equation method en
dc.subject Variable thickness en
dc.subject Vibrations en
dc.subject.classification Engineering, Mechanical en
dc.subject.classification Mechanics en
dc.subject.classification Materials Science, Characterization & Testing en
dc.subject.other Boundary conditions en
dc.subject.other Boundary element method en
dc.subject.other Integral equations en
dc.subject.other Problem solving en
dc.subject.other Thickness control en
dc.subject.other Variational techniques en
dc.subject.other Vibration analysis en
dc.subject.other Axisymmetric thickness en
dc.subject.other Boundary elements en
dc.subject.other Circular plates en
dc.subject.other Free vibrations en
dc.subject.other Variable thickness en
dc.subject.other Plates (structural components) en
dc.title Free vibrations of circular plates with axisymmetric thickness variation en
heal.type journalArticle en
heal.identifier.primary 10.1243/03093247JSA321 en
heal.identifier.secondary http://dx.doi.org/10.1243/03093247JSA321 en
heal.language English en
heal.publicationDate 2008 en
heal.abstract The integral equation method is developed for vibration analysis of solid circular plates with arbitrary thickness variation along the radius. General boundary conditions are considered. The problem is formulated in terms of displacements. The resulting fourth-order linear hyperbolic equation with variable coefficients is solved using the analogue equation method of Katsikadelis. According to this method the linear governing differential equation is replaced by a linear equation of a substitute beam with unit bending stiffness, under a fictitious load distribution. Numerical examples are presented for plates with various thickness variation laws, which illustrate the method and demonstrate its efficiency and accuracy. © IMechE 2008. en
heal.publisher PROFESSIONAL ENGINEERING PUBLISHING LTD en
heal.journalName Journal of Strain Analysis for Engineering Design en
dc.identifier.doi 10.1243/03093247JSA321 en
dc.identifier.isi ISI:000255110700004 en
dc.identifier.volume 43 en
dc.identifier.issue 3 en
dc.identifier.spage 177 en
dc.identifier.epage 185 en


Αρχεία σε αυτό το τεκμήριο

Αρχεία Μέγεθος Μορφότυπο Προβολή

Δεν υπάρχουν αρχεία που σχετίζονται με αυτό το τεκμήριο.

Αυτό το τεκμήριο εμφανίζεται στην ακόλουθη συλλογή(ές)

Εμφάνιση απλής εγγραφής