dc.contributor.author |
Stathopoulos, A |
en |
dc.contributor.author |
Dimitriou, L |
en |
dc.contributor.author |
Tsekeris, T |
en |
dc.date.accessioned |
2014-03-01T01:28:29Z |
|
dc.date.available |
2014-03-01T01:28:29Z |
|
dc.date.issued |
2008 |
en |
dc.identifier.issn |
1093-9687 |
en |
dc.identifier.uri |
https://dspace.lib.ntua.gr/xmlui/handle/123456789/18855 |
|
dc.subject |
Combining Forecast |
en |
dc.subject |
Fuzzy Model |
en |
dc.subject |
Traffic Flow |
en |
dc.subject.classification |
Computer Science, Interdisciplinary Applications |
en |
dc.subject.classification |
Construction & Building Technology |
en |
dc.subject.classification |
Engineering, Civil |
en |
dc.subject.other |
Artificial intelligence |
en |
dc.subject.other |
Backpropagation |
en |
dc.subject.other |
Chlorine compounds |
en |
dc.subject.other |
Control theory |
en |
dc.subject.other |
Heuristic programming |
en |
dc.subject.other |
Neural networks |
en |
dc.subject.other |
Traffic control |
en |
dc.subject.other |
Traffic surveys |
en |
dc.subject.other |
Adaptive Kalman filtering |
en |
dc.subject.other |
Arterial networks |
en |
dc.subject.other |
Artificial neural network models |
en |
dc.subject.other |
Combined forecasting |
en |
dc.subject.other |
Direct search |
en |
dc.subject.other |
Empirical results |
en |
dc.subject.other |
Fuzzy modeling |
en |
dc.subject.other |
Fuzzy rule-based systems |
en |
dc.subject.other |
Individual traffic |
en |
dc.subject.other |
Meta heuristic |
en |
dc.subject.other |
Model implementation |
en |
dc.subject.other |
Real-world |
en |
dc.subject.other |
Rolling horizons |
en |
dc.subject.other |
Short-term traffic flow forecasting |
en |
dc.subject.other |
System parameters |
en |
dc.subject.other |
Traffic flowing |
en |
dc.subject.other |
Urban traffic |
en |
dc.subject.other |
Forecasting |
en |
dc.subject.other |
artificial neural network |
en |
dc.subject.other |
forecasting method |
en |
dc.subject.other |
fuzzy mathematics |
en |
dc.subject.other |
Kalman filter |
en |
dc.subject.other |
knowledge based system |
en |
dc.subject.other |
modeling |
en |
dc.subject.other |
traffic management |
en |
dc.subject.other |
urban transport |
en |
dc.title |
Fuzzy modeling approach for combined forecasting of urban traffic flow |
en |
heal.type |
journalArticle |
en |
heal.identifier.primary |
10.1111/j.1467-8667.2008.00558.x |
en |
heal.identifier.secondary |
http://dx.doi.org/10.1111/j.1467-8667.2008.00558.x |
en |
heal.language |
English |
en |
heal.publicationDate |
2008 |
en |
heal.abstract |
This article addresses the problem of the accuracy of short-term traffic flow forecasting in the complex case of urban signalized arterial networks. A new, artificial intelligence (AI)-based approach is suggested for improving the accuracy of traffic predictions through suitably combining the forecasts derived from a set of individual predictors. This approach employs a fuzzy rule-based system (FRBS), which is augmented with an appropriate metaheuristic (direct search) technique to automate the tuning of the system parameters within an online adaptive rolling horizon framework. The proposed hybrid FRBS is used to nonlinearly combine traffic flow forecasts resulting from an online adaptive Kalman filter (KF) and an artificial neural network (ANN) model. The empirical results obtained from the model implementation into a real-world urban signalized arterial demonstrate the ability of the proposed approach to considerably overperform the given individual traffic predictors. © 2008 Computer-Aided Civil and Infrastructure Engineering. |
en |
heal.publisher |
BLACKWELL PUBLISHING |
en |
heal.journalName |
Computer-Aided Civil and Infrastructure Engineering |
en |
dc.identifier.doi |
10.1111/j.1467-8667.2008.00558.x |
en |
dc.identifier.isi |
ISI:000258597400004 |
en |
dc.identifier.volume |
23 |
en |
dc.identifier.issue |
7 |
en |
dc.identifier.spage |
521 |
en |
dc.identifier.epage |
535 |
en |