HEAL DSpace

Fuzzy modeling approach for combined forecasting of urban traffic flow

Αποθετήριο DSpace/Manakin

Εμφάνιση απλής εγγραφής

dc.contributor.author Stathopoulos, A en
dc.contributor.author Dimitriou, L en
dc.contributor.author Tsekeris, T en
dc.date.accessioned 2014-03-01T01:28:29Z
dc.date.available 2014-03-01T01:28:29Z
dc.date.issued 2008 en
dc.identifier.issn 1093-9687 en
dc.identifier.uri https://dspace.lib.ntua.gr/xmlui/handle/123456789/18855
dc.subject Combining Forecast en
dc.subject Fuzzy Model en
dc.subject Traffic Flow en
dc.subject.classification Computer Science, Interdisciplinary Applications en
dc.subject.classification Construction & Building Technology en
dc.subject.classification Engineering, Civil en
dc.subject.other Artificial intelligence en
dc.subject.other Backpropagation en
dc.subject.other Chlorine compounds en
dc.subject.other Control theory en
dc.subject.other Heuristic programming en
dc.subject.other Neural networks en
dc.subject.other Traffic control en
dc.subject.other Traffic surveys en
dc.subject.other Adaptive Kalman filtering en
dc.subject.other Arterial networks en
dc.subject.other Artificial neural network models en
dc.subject.other Combined forecasting en
dc.subject.other Direct search en
dc.subject.other Empirical results en
dc.subject.other Fuzzy modeling en
dc.subject.other Fuzzy rule-based systems en
dc.subject.other Individual traffic en
dc.subject.other Meta heuristic en
dc.subject.other Model implementation en
dc.subject.other Real-world en
dc.subject.other Rolling horizons en
dc.subject.other Short-term traffic flow forecasting en
dc.subject.other System parameters en
dc.subject.other Traffic flowing en
dc.subject.other Urban traffic en
dc.subject.other Forecasting en
dc.subject.other artificial neural network en
dc.subject.other forecasting method en
dc.subject.other fuzzy mathematics en
dc.subject.other Kalman filter en
dc.subject.other knowledge based system en
dc.subject.other modeling en
dc.subject.other traffic management en
dc.subject.other urban transport en
dc.title Fuzzy modeling approach for combined forecasting of urban traffic flow en
heal.type journalArticle en
heal.identifier.primary 10.1111/j.1467-8667.2008.00558.x en
heal.identifier.secondary http://dx.doi.org/10.1111/j.1467-8667.2008.00558.x en
heal.language English en
heal.publicationDate 2008 en
heal.abstract This article addresses the problem of the accuracy of short-term traffic flow forecasting in the complex case of urban signalized arterial networks. A new, artificial intelligence (AI)-based approach is suggested for improving the accuracy of traffic predictions through suitably combining the forecasts derived from a set of individual predictors. This approach employs a fuzzy rule-based system (FRBS), which is augmented with an appropriate metaheuristic (direct search) technique to automate the tuning of the system parameters within an online adaptive rolling horizon framework. The proposed hybrid FRBS is used to nonlinearly combine traffic flow forecasts resulting from an online adaptive Kalman filter (KF) and an artificial neural network (ANN) model. The empirical results obtained from the model implementation into a real-world urban signalized arterial demonstrate the ability of the proposed approach to considerably overperform the given individual traffic predictors. © 2008 Computer-Aided Civil and Infrastructure Engineering. en
heal.publisher BLACKWELL PUBLISHING en
heal.journalName Computer-Aided Civil and Infrastructure Engineering en
dc.identifier.doi 10.1111/j.1467-8667.2008.00558.x en
dc.identifier.isi ISI:000258597400004 en
dc.identifier.volume 23 en
dc.identifier.issue 7 en
dc.identifier.spage 521 en
dc.identifier.epage 535 en


Αρχεία σε αυτό το τεκμήριο

Αρχεία Μέγεθος Μορφότυπο Προβολή

Δεν υπάρχουν αρχεία που σχετίζονται με αυτό το τεκμήριο.

Αυτό το τεκμήριο εμφανίζεται στην ακόλουθη συλλογή(ές)

Εμφάνιση απλής εγγραφής