HEAL DSpace

Generalized flooding and multicue PDE-based image segmentation

Αποθετήριο DSpace/Manakin

Εμφάνιση απλής εγγραφής

dc.contributor.author Sofou, A en
dc.contributor.author Maragos, P en
dc.date.accessioned 2014-03-01T01:28:30Z
dc.date.available 2014-03-01T01:28:30Z
dc.date.issued 2008 en
dc.identifier.issn 1057-7149 en
dc.identifier.uri https://dspace.lib.ntua.gr/xmlui/handle/123456789/18858
dc.subject Feature extraction en
dc.subject Morphological filtering en
dc.subject Partial differential equation (PDE) en
dc.subject Segmentation en
dc.subject Topographic flooding en
dc.subject U + V image decomposition en
dc.subject Watershed en
dc.subject.classification Computer Science, Artificial Intelligence en
dc.subject.classification Engineering, Electrical & Electronic en
dc.subject.other Feature extraction en
dc.subject.other Image analysis en
dc.subject.other Image quality en
dc.subject.other Mathematical morphology en
dc.subject.other Partial differential equations en
dc.subject.other Image decomposition en
dc.subject.other Morphological filtering en
dc.subject.other Topographic flooding en
dc.subject.other Image segmentation en
dc.subject.other algorithm en
dc.subject.other article en
dc.subject.other artificial intelligence en
dc.subject.other automated pattern recognition en
dc.subject.other computer assisted diagnosis en
dc.subject.other image enhancement en
dc.subject.other methodology en
dc.subject.other reproducibility en
dc.subject.other sensitivity and specificity en
dc.subject.other three dimensional imaging en
dc.subject.other Algorithms en
dc.subject.other Artificial Intelligence en
dc.subject.other Image Enhancement en
dc.subject.other Image Interpretation, Computer-Assisted en
dc.subject.other Imaging, Three-Dimensional en
dc.subject.other Pattern Recognition, Automated en
dc.subject.other Reproducibility of Results en
dc.subject.other Sensitivity and Specificity en
dc.title Generalized flooding and multicue PDE-based image segmentation en
heal.type journalArticle en
heal.identifier.primary 10.1109/TIP.2007.916156 en
heal.identifier.secondary http://dx.doi.org/10.1109/TIP.2007.916156 en
heal.language English en
heal.publicationDate 2008 en
heal.abstract Image segmentation remains an important, but hard-to-solve, problem since it appears to be application dependent with usually no a priori information available regarding the image structure. Moreover, the increasing demands of image analysis tasks in terms of segmentation results' quality introduce the necessity of employing multiple cues for improving image segmentation results. In this paper, we attempt to incorporate cues such as intensity contrast, region size, and texture in the segmentation procedure and derive improved results compared to using individual cues separately. We emphasize on the overall segmentation procedure, and we propose efficient simplification operators and feature extraction schemes, capable of quantifying important characteristics, like geometrical complexity, rate of change in local contrast variations, and orientation, that eventually favor the final segmentation result. Based on the well-known morphological paradigm of watershed transform segmentation, which exploits intensity contrast and region size criteria, we investigate its partial differential equation (PDE) formulation, and we extend it in order to satisfy various flooding criteria, thus making it applicable to a wider range of images. Going a step further, we introduce a segmentation scheme that couples contrast criteria in flooding with texture information. The modeling of the proposed scheme is done via PDEs and the efficient incorporation of the available contrast and texture information, is done by selecting an appropriate cartoon-texture image decomposition scheme. The proposed coupled segmentation scheme is driven by two separate image components: artoon U (for contrast information) and texture component V. The performance of the proposed segmentation scheme is demonstrated through a complete set of experimental results and substantiated using quantitative and qualitative criteria. © 2008 IEEE. en
heal.publisher IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC en
heal.journalName IEEE Transactions on Image Processing en
dc.identifier.doi 10.1109/TIP.2007.916156 en
dc.identifier.isi ISI:000253272300010 en
dc.identifier.volume 17 en
dc.identifier.issue 3 en
dc.identifier.spage 364 en
dc.identifier.epage 376 en


Αρχεία σε αυτό το τεκμήριο

Αρχεία Μέγεθος Μορφότυπο Προβολή

Δεν υπάρχουν αρχεία που σχετίζονται με αυτό το τεκμήριο.

Αυτό το τεκμήριο εμφανίζεται στην ακόλουθη συλλογή(ές)

Εμφάνιση απλής εγγραφής