dc.contributor.author |
Jung, S-M |
en |
dc.contributor.author |
Rassias, TM |
en |
dc.date.accessioned |
2014-03-01T01:28:30Z |
|
dc.date.available |
2014-03-01T01:28:30Z |
|
dc.date.issued |
2008 |
en |
dc.identifier.issn |
1331-4343 |
en |
dc.identifier.uri |
https://dspace.lib.ntua.gr/xmlui/handle/123456789/18860 |
|
dc.relation.uri |
http://www.scopus.com/inward/record.url?eid=2-s2.0-55349141118&partnerID=40&md5=ddb2e788fa177959fd2fb1c3a8f92d6e |
en |
dc.subject |
Bernoulli differential equation |
en |
dc.subject |
Generalized Hyers-Ulam stability |
en |
dc.subject |
Riccati differential equation |
en |
dc.subject.classification |
Mathematics |
en |
dc.subject.other |
1ST-ORDER |
en |
dc.title |
Generalized Hyers-Ulam stability of Riccati differential equation |
en |
heal.type |
journalArticle |
en |
heal.language |
English |
en |
heal.publicationDate |
2008 |
en |
heal.abstract |
In this paper, we will prove the generalized Hyers-Ulam stability of the Riccati differential equation of the form y '(t) + g(t)y(t) + h(t)y(t)(2) = k(t) under some additional conditions. Some concrete examples will be introduced. |
en |
heal.publisher |
ELEMENT |
en |
heal.journalName |
Mathematical Inequalities and Applications |
en |
dc.identifier.isi |
ISI:000260346000018 |
en |
dc.identifier.volume |
11 |
en |
dc.identifier.issue |
4 |
en |
dc.identifier.spage |
777 |
en |
dc.identifier.epage |
782 |
en |