HEAL DSpace

Grid enabled, hierarchical distributed metamodel-assisted evolutionary algorithms for aerodynamic shape optimization

Αποθετήριο DSpace/Manakin

Εμφάνιση απλής εγγραφής

dc.contributor.author Liakopoulos, PIK en
dc.contributor.author Kampolis, IC en
dc.contributor.author Giannakoglou, KC en
dc.date.accessioned 2014-03-01T01:28:31Z
dc.date.available 2014-03-01T01:28:31Z
dc.date.issued 2008 en
dc.identifier.issn 0167-739X en
dc.identifier.uri https://dspace.lib.ntua.gr/xmlui/handle/123456789/18869
dc.subject Distributed search en
dc.subject Evolutionary algorithms en
dc.subject Grid computing en
dc.subject Hierarchical search en
dc.subject Metamodels en
dc.subject Optimization en
dc.subject.classification Computer Science, Theory & Methods en
dc.subject.other Aerodynamics en
dc.subject.other Authentication en
dc.subject.other Cluster analysis en
dc.subject.other Grid computing en
dc.subject.other Optimization en
dc.subject.other Problem solving en
dc.subject.other Resource allocation en
dc.subject.other Distributed search en
dc.subject.other Hierarchical and Distributed scheme (HDMAEA) en
dc.subject.other Hierarchical search en
dc.subject.other Metamodels en
dc.subject.other Evolutionary algorithms en
dc.title Grid enabled, hierarchical distributed metamodel-assisted evolutionary algorithms for aerodynamic shape optimization en
heal.type journalArticle en
heal.identifier.primary 10.1016/j.future.2008.03.004 en
heal.identifier.secondary http://dx.doi.org/10.1016/j.future.2008.03.004 en
heal.language English en
heal.publicationDate 2008 en
heal.abstract A Grid-enabled optimization environment is presented. It is based on Metamodel-Assisted Evolutionary Algorithms (MAEAs), where radial basis function networks, trained on the fly on selected subsets of the previously evaluated individuals, are used to pre-evaluate the population members. The search follows a Hierarchical and Distributed scheme (HDMAEA), with more than one search level, each of which is associated with a different problem-specific evaluation tool and a different number of semi-isolated demes. Irrespective of the use of cluster or Grid computing, the HDMAEA drastically reduces the number of evaluations required to reach the optimal solution(s). The Grid-enabled HDMAEA, based on the master-slave model with simultaneously evaluated population members, aims at solving large scale optimization problems in affordable wall clock time. In the proposed Grid-computing setup, Condor is used as the local resource manager on each contributing cluster, authentication and interfacing is carried out via the Globus Toolkit and the unification of Grid resources under a common queue is undertaken by the Gridway metascheduler. If more than one search level are used (hierarchical search), the optimization of Grid resources' allocation relies on the distinction between computationally demanding, high-accuracy and less demanding, low-accuracy evaluation tools. The proposed Grid-enabled problem solving environment is demonstrated on three aerodynamic shape optimization problems, namely the design of a compressor cascade and two 3D elbow ducts, on three remote clusters. (C) 2008 Elsevier B.V. All rights reserved. en
heal.publisher ELSEVIER SCIENCE BV en
heal.journalName Future Generation Computer Systems en
dc.identifier.doi 10.1016/j.future.2008.03.004 en
dc.identifier.isi ISI:000257354200008 en
dc.identifier.volume 24 en
dc.identifier.issue 7 en
dc.identifier.spage 701 en
dc.identifier.epage 708 en


Αρχεία σε αυτό το τεκμήριο

Αρχεία Μέγεθος Μορφότυπο Προβολή

Δεν υπάρχουν αρχεία που σχετίζονται με αυτό το τεκμήριο.

Αυτό το τεκμήριο εμφανίζεται στην ακόλουθη συλλογή(ές)

Εμφάνιση απλής εγγραφής