HEAL DSpace

Heuristic algorithms for Hadamard matrices with two circulant cores

Αποθετήριο DSpace/Manakin

Εμφάνιση απλής εγγραφής

dc.contributor.author Chiarandini, M en
dc.contributor.author Kotsireas, IS en
dc.contributor.author Koukouvinos, C en
dc.contributor.author Paquete, L en
dc.date.accessioned 2014-03-01T01:28:35Z
dc.date.available 2014-03-01T01:28:35Z
dc.date.issued 2008 en
dc.identifier.issn 0304-3975 en
dc.identifier.uri https://dspace.lib.ntua.gr/xmlui/handle/123456789/18877
dc.subject Hadamard matrices en
dc.subject Heuristic algorithms en
dc.subject.classification Computer Science, Theory & Methods en
dc.subject.other Heuristic methods en
dc.subject.other Matrix algebra en
dc.subject.other Portals en
dc.subject.other Tabu search en
dc.subject.other Binary variables en
dc.subject.other Circulant en
dc.subject.other Combinatorial problems en
dc.subject.other Design heuristic en
dc.subject.other Hadamard matrices en
dc.subject.other Objective function en
dc.subject.other Objective functions en
dc.subject.other Special structure en
dc.subject.other Supplementary difference sets en
dc.subject.other Heuristic algorithms en
dc.title Heuristic algorithms for Hadamard matrices with two circulant cores en
heal.type journalArticle en
heal.identifier.primary 10.1016/j.tcs.2008.06.002 en
heal.identifier.secondary http://dx.doi.org/10.1016/j.tcs.2008.06.002 en
heal.language English en
heal.publicationDate 2008 en
heal.abstract We design heuristic algorithms to construct Hadamard matrices with two circulant cores. This hard combinatorial problem can be formulated in terms of objective functions of several binary variables, so that heuristic methodologies can be used. Our algorithms are based on local and tabu search and they use information on the geometry of the objective function landscapes. In addition, we use the supplementary difference sets formalism to detect when solutions of a special structure exist. Using these algorithms we have computed at least one Hadamard matrix with two circulant cores of the sixteen orders 56, 60, 64, 68, 72, 76, 80, 84, 88, 92, 96, 100, 104, 108, 112, 116. In particular, the Hadamard matrix with two circulant cores of order 116 is constructed here for the first time, indeed it was accidentally reported as known in an earlier paper. © 2008 Elsevier B.V. All rights reserved. en
heal.publisher ELSEVIER SCIENCE BV en
heal.journalName Theoretical Computer Science en
dc.identifier.doi 10.1016/j.tcs.2008.06.002 en
dc.identifier.isi ISI:000260975400018 en
dc.identifier.volume 407 en
dc.identifier.issue 1-3 en
dc.identifier.spage 274 en
dc.identifier.epage 277 en


Αρχεία σε αυτό το τεκμήριο

Αρχεία Μέγεθος Μορφότυπο Προβολή

Δεν υπάρχουν αρχεία που σχετίζονται με αυτό το τεκμήριο.

Αυτό το τεκμήριο εμφανίζεται στην ακόλουθη συλλογή(ές)

Εμφάνιση απλής εγγραφής