HEAL DSpace

Hierarchical clustering for OLAP: The CUBE File approach

Αποθετήριο DSpace/Manakin

Εμφάνιση απλής εγγραφής

dc.contributor.author Karayannidis, N en
dc.contributor.author Sellis, T en
dc.date.accessioned 2014-03-01T01:28:35Z
dc.date.available 2014-03-01T01:28:35Z
dc.date.issued 2008 en
dc.identifier.issn 1066-8888 en
dc.identifier.uri https://dspace.lib.ntua.gr/xmlui/handle/123456789/18878
dc.subject CUBE File en
dc.subject Data cube en
dc.subject Hierarchical clustering en
dc.subject OLAP en
dc.subject Physical data clustering en
dc.subject.classification Computer Science, Hardware & Architecture en
dc.subject.classification Computer Science, Information Systems en
dc.subject.other GRID FILE en
dc.subject.other IMPLEMENTATION en
dc.title Hierarchical clustering for OLAP: The CUBE File approach en
heal.type journalArticle en
heal.identifier.primary 10.1007/s00778-006-0022-1 en
heal.identifier.secondary http://dx.doi.org/10.1007/s00778-006-0022-1 en
heal.language English en
heal.publicationDate 2008 en
heal.abstract This paper deals with the problem of physical clustering of multidimensional data that are organized in hierarchies on disk in a hierarchy-preserving manner. This is called hierarchical clustering. A typical case, where hierarchical clustering is necessary for reducing I/Os during query evaluation, is the most detailed data of an OLAP cube. The presence of hierarchies in the multidimensional space results in an enormous search space for this problem. We propose a representation of the data space that results in a chunk-tree representation of the cube. The model is adaptive to the cube's extensive sparseness and provides efficient access to subsets of data based on hierarchy value combinations. Based on this representation of the search space we formulate the problem as a chunk-to-bucket allocation problem, which is a packing problem as opposed to the linear ordering approach followed in the literature. We propose a metric to evaluate the quality of hierarchical clustering achieved (i.e., evaluate the solutions to the problem) and formulate the problem as an optimization problem. We prove its NP-Hardness and provide an effective solution based on a linear time greedy algorithm. The solution of this problem leads to the construction of the CUBE File data structure. We analyze in depth all steps of the construction and provide solutions for interesting sub-problems arising, such as the formation of bucket-regions, the storage of large data chunks and the caching of the upper nodes (root directory) in main memory. Finally, we provide an extensive experimental evaluation of the CUBE File's adaptability to the data space sparseness as well as to an increasing number of data points. The main result is that the CUBE File is highly adaptive to even the most sparse data spaces and for realistic cases of data point cardinalities provides hierarchical clustering of high quality and significant space savings. © 2006 Springer-Verlag. en
heal.publisher SPRINGER en
heal.journalName VLDB Journal en
dc.identifier.doi 10.1007/s00778-006-0022-1 en
dc.identifier.isi ISI:000256765700002 en
dc.identifier.volume 17 en
dc.identifier.issue 4 en
dc.identifier.spage 621 en
dc.identifier.epage 655 en


Αρχεία σε αυτό το τεκμήριο

Αρχεία Μέγεθος Μορφότυπο Προβολή

Δεν υπάρχουν αρχεία που σχετίζονται με αυτό το τεκμήριο.

Αυτό το τεκμήριο εμφανίζεται στην ακόλουθη συλλογή(ές)

Εμφάνιση απλής εγγραφής