HEAL DSpace

Homomorphisms in C*-ternary algebras and J B*-triples

DSpace/Manakin Repository

Show simple item record

dc.contributor.author Park, C en
dc.contributor.author Rassias, ThM en
dc.date.accessioned 2014-03-01T01:28:38Z
dc.date.available 2014-03-01T01:28:38Z
dc.date.issued 2008 en
dc.identifier.issn 0022-247X en
dc.identifier.uri https://dspace.lib.ntua.gr/xmlui/handle/123456789/18885
dc.subject Apollonius type additive functional equation en
dc.subject C*-ternary algebra homomorphism en
dc.subject C*-ternary derivation en
dc.subject Generalized Hyers-Ulam stability en
dc.subject J B*-triple derivation en
dc.subject J B*-triple homomorphism en
dc.subject.classification Mathematics, Applied en
dc.subject.classification Mathematics en
dc.subject.other APPROXIMATELY ADDITIVE MAPPINGS en
dc.subject.other ULAM-RASSIAS STABILITY en
dc.subject.other FUNCTIONAL-EQUATIONS en
dc.subject.other BANACH-SPACES en
dc.title Homomorphisms in C*-ternary algebras and J B*-triples en
heal.type journalArticle en
heal.identifier.primary 10.1016/j.jmaa.2007.03.073 en
heal.identifier.secondary http://dx.doi.org/10.1016/j.jmaa.2007.03.073 en
heal.language English en
heal.publicationDate 2008 en
heal.abstract In this paper, we investigate homomorphisms between C*-ternary algebras and derivations on C*-ternary algebras, and homomorphisins between J B*-triples and derivations on J B*-triples, associated with the following Apollonius type additive functional equation f(z - x) + f(z - y) = -1/2f(x + y) + 2f(z - x+y/4). (C) 2007 Published by Elsevier Inc. en
heal.publisher ACADEMIC PRESS INC ELSEVIER SCIENCE en
heal.journalName Journal of Mathematical Analysis and Applications en
dc.identifier.doi 10.1016/j.jmaa.2007.03.073 en
dc.identifier.isi ISI:000255425400002 en
dc.identifier.volume 337 en
dc.identifier.issue 1 en
dc.identifier.spage 13 en
dc.identifier.epage 20 en


Files in this item

Files Size Format View

There are no files associated with this item.

This item appears in the following Collection(s)

Show simple item record