dc.contributor.author |
Papadimitriou, NI |
en |
dc.contributor.author |
Tsimpanogiannis, IN |
en |
dc.contributor.author |
Peters, CJ |
en |
dc.contributor.author |
Papaioannou, ATh |
en |
dc.contributor.author |
Stubos, AK |
en |
dc.date.accessioned |
2014-03-01T01:28:38Z |
|
dc.date.available |
2014-03-01T01:28:38Z |
|
dc.date.issued |
2008 |
en |
dc.identifier.issn |
1520-6106 |
en |
dc.identifier.uri |
https://dspace.lib.ntua.gr/xmlui/handle/123456789/18889 |
|
dc.subject.classification |
Chemistry, Physical |
en |
dc.subject.other |
Hydrates |
en |
dc.subject.other |
Hydrogen |
en |
dc.subject.other |
Hydrogen storage |
en |
dc.subject.other |
Monte Carlo methods |
en |
dc.subject.other |
Organic polymers |
en |
dc.subject.other |
Binary hydrates |
en |
dc.subject.other |
Grand Canonical Monte Carlo simulations |
en |
dc.subject.other |
Methyl cyclohexanes |
en |
dc.subject.other |
Monte Carlo studies |
en |
dc.subject.other |
Storage capacities |
en |
dc.subject.other |
Upper limits |
en |
dc.subject.other |
Hydration |
en |
dc.title |
Hydrogen storage in sH hydrates: A Monte Carlo study |
en |
heal.type |
journalArticle |
en |
heal.identifier.primary |
10.1021/jp805906c |
en |
heal.identifier.secondary |
http://dx.doi.org/10.1021/jp805906c |
en |
heal.language |
English |
en |
heal.publicationDate |
2008 |
en |
heal.abstract |
Grand canonical Monte Carlo simulations are performed to evaluate the hydrogen-storage capacity of the recently discovered hydrogen hydrates of the sH type, at 274 K and up to 500 MPa. First, the pure H2 hydrate is investigated in order to determine the upper limit of H2 content in sH hydrates. It is found that the storage capacity of the hypothetical pure H2 hydrate could reach 3.6 wt % at 500 MPa. Depending on pressure, the large cavity of this hydrate can accommodate up to eight H2 molecules, while the small and medium ones are singly occupied even at pressures as high as 500 MPa. Next, the binary H2-methylcyclohexane sH hydrate is examined. In this case, the small and medium cavities are again singly occupied, resulting in a maximum H2 uptake of 1.4 wt %. Finally, the results from simulations on pure H2 and binary hydrates are utilized to investigate the potential of H2 storage in sH hydrates where the promoter molecules occupy the medium instead of the large cavities. © 2008 American Chemical Society. |
en |
heal.publisher |
AMER CHEMICAL SOC |
en |
heal.journalName |
Journal of Physical Chemistry B |
en |
dc.identifier.doi |
10.1021/jp805906c |
en |
dc.identifier.isi |
ISI:000260675800016 |
en |
dc.identifier.volume |
112 |
en |
dc.identifier.issue |
45 |
en |
dc.identifier.spage |
14206 |
en |
dc.identifier.epage |
14211 |
en |